摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
摘要:
A method of forming an integrated circuit including a Schottky diode includes providing a substrate of a first conductivity type, defining a region of a second conductivity type relative to the substrate and forming an insulator over the second conductivity type region. The method also includes removing an area of the insulator for definition of a contact hole, and removing an area encircling the contact hole and forming highly doped regions of the second conductivity type in second conductivity type regions encircling the contact hole. The method further includes depositing a Schottky metal in the contact hole and annealing the metal to form a suicide interface to the second conductivity type region.
摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.
摘要:
An integrated circuit comprising a receiver, a transmitter, and a frequency lock loop configured to supply clock signals to the receiver and transmitter, the frequency lock loop including a current source having a thermal voltage generator, a current controlled oscillator having a plurality of selectively engageable current mirrors multiplying up the current of the current source, the frequency of the frequency lock loop varying in response to selection of the current mirrors, the current mirrors including transistors operating in a subthreshold mode. A method of operating an integrated circuit including a receiver, a transmitter, and a frequency lock loop configured to supply clock signals to the receiver and transmitter, the frequency lock loop including a current source having a thermal voltage generator, a current controlled oscillator having a plurality of selectively engageable current mirrors multiplying up the current of the current source, the frequency of oscillation of the frequency lock loop varying in response to selection of the current mirrors, the method comprising engaging selected current mirrors and operating transistors in the current mirrors in a subthreshold mode.
摘要:
In one embodiment, a method includes transmitting a signal from a wireless transmitter to a radio frequency (RF) device of a plurality of RF devices within a communication range of the transmitter. The signal is to select a group of the RF devices. A reply signal is received from each RF device if the respective RF device determines that it is a member of the group.
摘要:
An amplifier powered by a selectively engageable voltage source and a method for operating the amplifier. The amplifier includes first and second electrodes for receiving an input signal to be amplified. The first and second electrodes are adapted to be respectively connected to coupling capacitors. The amplifier also includes a differential amplifier having inputs respectively connected to the first and second electrodes, and having an output. The amplifier additionally includes selectively engageable resistances coupled between the voltage source and respective inputs of the differential amplifier and defining, with the coupling capacitors, the high pass characteristics of the circuit. The amplifier further includes second selectively engageable resistances coupled between the voltage source and respective inputs of the differential amplifier. The second resistances respectively have smaller values than the first mentioned resistances, and are engaged and then disengaged in response to the voltage source being engaged.
摘要:
A radio frequency identification device comprises an integrated circuit including a receiver, a transmitter, and a microprocessor. The receiver and transmitter together define an active transponder. The integrated circuit is preferably a monolithic single die integrated circuit including the receiver, the transmitter, and the microprocessor. Because the device includes an active transponder, instead of a transponder which relies on magnetic coupling for power, the device has a much greater range.