Abstract:
A display device is provided and includes first and second substrates; a liquid crystal layer filled between the first and second substrates; a counter electrode pattern formed on the first substrate; scanning lines extending in a first direction; signal lines; and a first pixel electrode pattern and a second pixel electrode pattern formed on the first substrate, wherein the first pixel electrode pattern and the second pixel electrode pattern are located in line symmetry with respect to a first scanning line of the scanning lines.
Abstract:
A display device includes a display section in which a plurality of pixels are arrayed in a matrix, a plurality of scan lines which select pixels, a plurality of signal lines which supply image signals to the selected pixels, and color filters that are arranged so as to correspond to color displays of the pixels. In the device, the display section includes an effective pixel portion and a frame portion that surrounds the effective pixel portion, and the frame portion and a wiring circuit of the effective pixel portion are covered with light-shielding layers, the light-shielding layers being separated from each other at a certain separation location in the display section, and a plurality of color filters having different colors are arranged by being stacked at the separation location.
Abstract:
According to one embodiment, a liquid crystal display device includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a metal layer formed on an interlayer insulating film, arranged in contact with at least one of common electrodes adjacent to each other via a slit, and covering at least a part of the slit. The metal layer is at least partly opposed to a signal line located in correspondence with the slit and is arranged closer than the signal line to a liquid crystal layer.
Abstract:
According to one embodiment, a liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes a first line, a second line, a switching element, a common electrode, an insulating film disposed on the common electrode, a pixel electrode connected with the switching element and opposed to the common electrode with the insulating film interposed therebetween, and a first alignment film covering the pixel electrode. The second substrate includes a second alignment film. And the pixel electrode includes one main pixel electrode extending in a belt shape in a pixel area defined by the first line and the second line.
Abstract:
An IPS LCD that not only increases the screen luminance but also prevents the occurrence of image blurs by reducing the area of disclination and preventing the liquid crystal molecules from rising in a direction normal to the TFT substrate. A pixel electrode is disposed in the pixel surrounded by two gate lines and two data lines. A planar common electrode is located below the pixel electrode with an inter-layer insulating film provided therebetween. The pixel electrode includes slits each being open at the edge on one side and has the shape of a comb. Liquid crystals with negative dielectric anisotropy are used as liquid crystal. The above structure increases the transmissive area of the pixel up to the open edges of the slits and also prevents the liquid crystal molecules from rising in a direction normal to the TFT substrate, thereby preventing the occurrence of blurs.
Abstract:
A display device includes a display section in which a plurality of pixels are arrayed in a matrix, a plurality of scan lines which select pixels, a plurality of signal lines which supply image signals to the selected pixels, and color filters that are arranged so as to correspond to color displays of the pixels. In the device, the display section includes an effective pixel portion and a frame portion that surrounds the effective pixel portion, and the frame portion and a wiring circuit of the effective pixel portion are covered with light-shielding layers, the light-shielding layers being separated from each other at a certain separation location in the display section, and a plurality of color filters having different colors are arranged by being stacked at the separation location.
Abstract:
According to one embodiment, a liquid crystal display includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a first line, a second line, a switching element, a pixel electrode, a common electrode, and a first alignment film. The second substrate includes a second alignment film. The liquid crystal layer includes a liquid crystal molecule kept between the first alignment film and the second alignment film. First anchoring strength is provided on the first alignment film which is a photo-alignment film, second anchoring strength is provided on the second alignment film which is a rubbing alignment film, and the first anchoring strength is substantially equal to or greater than the second anchoring strength.
Abstract:
A display device includes a display section in which a plurality of pixels are arrayed in a matrix, a plurality of scan lines which select pixels, a plurality of signal lines which supply image signals to the selected pixels, and color filters that are arranged so as to correspond to color displays of the pixels. In the device, the display section includes an effective pixel portion and a frame portion that surrounds the effective pixel portion, and the frame portion and a wiring circuit of the effective pixel portion are covered with light-shielding layers, the light-shielding layers being separated from each other at a certain separation location in the display section, and a plurality of color filters having different colors are arranged by being stacked at the separation location.
Abstract:
A liquid crystal display device including first and second substrates; a liquid crystal layer arranged between the first and second substrates; a plurality of pixel regions each surrounded by a signal line and a scanning line; a counter electrode arranged on the first substrate; and a pixel electrode arranged on the first substrate, the pixel electrode including a plurality of electrode branches, a plurality of slits formed between the electrode branches, and a protrusion protruding in a first direction in which the scanning line extends, wherein at least one of the slits extends in a second direction in which the signal line extends.
Abstract:
A display device is provided and includes first and second substrates; a liquid crystal layer filled between the first and second substrates; a counter electrode pattern formed on the first substrate; scanning lines extending in a first direction; signal lines; and a first pixel electrode pattern and a second pixel electrode pattern formed on the first substrate, wherein the first pixel electrode pattern and the second pixel electrode pattern are located in line symmetry with respect to a first scanning line of the scanning lines.