Synchronous permanent magnet planar motor
    1.
    发明申请
    Synchronous permanent magnet planar motor 有权
    同步永磁平面电机

    公开(公告)号:US20060049699A1

    公开(公告)日:2006-03-09

    申请号:US11207425

    申请日:2005-08-19

    IPC分类号: H02K41/00

    CPC分类号: H02K41/03 H02K2201/18

    摘要: According to the invention, configurations of X-windings and Y-windings in a synchronous permanent planar motor are improved, X-windings and Y-windings overlap in the direction normal to the planar magnet array and distribute on the entire surface of the thrust core, such that effective wires in the X-windings and Y-windings are lengthened and increased in number, therefore the electromagnetic force generated by the SPMPM of this invention is increased correspondingly; X-windings and Y-windings are mounted on a thrust core made of iron material, thus the electromagnetic force is further increased; in addition, two separated anti-yawing member are provided on the mover for counteracting yawing of the mover, accordingly interference between anti-yawing torque and the electromagnetic force for propelling is eliminated.

    摘要翻译: 根据本发明,改进了同步永久平面电动机中的X绕组和Y绕组的构造,X绕组和Y绕组在垂直于平面磁体阵列的方向上重叠并分布在推力芯的整个表面上 使得X绕组和Y绕组中的有效导线数量增加并增加,因此本发明的SPMPM产生的电磁力相应增加; X绕组和Y绕组安装在由铁材料制成的推力芯上,因此电磁力进一步增加; 另外,在动子上设有两个分离的防偏转构件,用于抵抗动子的偏航,从而消除了抗偏转扭矩与用于推进的电磁力之间的干扰。

    Synchronous permanent magnet planar motor
    2.
    发明授权
    Synchronous permanent magnet planar motor 有权
    同步永磁平面电机

    公开(公告)号:US07339289B2

    公开(公告)日:2008-03-04

    申请号:US11207425

    申请日:2005-08-19

    IPC分类号: H20K41/00

    CPC分类号: H02K41/03 H02K2201/18

    摘要: According to the invention, configurations of X-windings and Y-windings in a synchronous permanent planar motor are improved, X-windings and Y-windings overlap in the direction normal to the planar magnet array and distribute on the entire surface of the thrust core, such that effective wires in the X-windings and Y-windings are lengthened and increased in number, therefore the electromagnetic force generated by the SPMPM of this invention is increased correspondingly; X-windings and Y-windings are mounted on a thrust core made of iron material, thus the electromagnetic force is further increased; in addition, two separated anti-yawing member are provided on the mover for counteracting yawing of the mover, accordingly interference between anti-yawing torque and the electromagnetic force for propelling is eliminated.

    摘要翻译: 根据本发明,改进了同步永久平面电动机中的X绕组和Y绕组的构造,X绕组和Y绕组在垂直于平面磁体阵列的方向上重叠并分布在推力芯的整个表面上 使得X绕组和Y绕组中的有效导线数量增加并增加,因此本发明的SPMPM产生的电磁力相应增加; X绕组和Y绕组安装在由铁材料制成的推力芯上,因此电磁力进一步增加; 另外,在动子上设有两个分离的防偏转构件,用于抵抗动子的偏航,从而消除了抗偏转扭矩与用于推进的电磁力之间的干扰。

    DUAL-STAGE SWITCHING SYSTEM FOR LITHOGRAPHIC MACHINE
    3.
    发明申请
    DUAL-STAGE SWITCHING SYSTEM FOR LITHOGRAPHIC MACHINE 有权
    用于雕刻机的双级切换系统

    公开(公告)号:US20100208227A1

    公开(公告)日:2010-08-19

    申请号:US12669671

    申请日:2008-03-14

    IPC分类号: G03B27/58

    CPC分类号: G03F7/70725 G03F7/70733

    摘要: A dual-stage switching system for lithographic machine includes a wafer stage to be operated in an exposure station and another wafer stage to be operated in a pre-processing station. The two wafer stages are provided on a base, with four 2-DOF driving units capable of moving along X direction and Y direction being provided along the edge of the base, and the wafer stages being disposed in a space surrounded by the four 2-DOF driving units and suspended on an upper surface of the base by air bearings. Each of the 2-DOF driving units includes upper and lower linear guides and a guiding sleeve, with the upper and lower linear guides being installed vertical to each other in their corresponding guiding sleeve. Two adjacent 2-DOF driving units cooperatively drive the wafer stage) to move in the X direction and Y direction.

    摘要翻译: 用于光刻机的双级切换系统包括在曝光站中操作的晶片台和在预处理站中操作的另一晶片台。 两个晶片台设置在基座上,四个2-DOF驱动单元能够沿着X方向移动,Y方向沿着基座的边缘设置,并且晶片台被布置在由四个2- DOF驱动单元,并通过空气轴承悬挂在基座的上表面上。 每个2自由度驱动单元包括上和下线性引导件和引导套筒,其中上和下线性引导件在其相应的导向套筒中彼此垂直地安装。 两个相邻的2-DOF驱动单元协同驱动晶片台)沿X方向和Y方向移动。

    Scanning mechanism of an ion implanter
    4.
    发明授权
    Scanning mechanism of an ion implanter 有权
    离子注入机的扫描机理

    公开(公告)号:US07259380B2

    公开(公告)日:2007-08-21

    申请号:US11155973

    申请日:2005-06-17

    IPC分类号: G21K5/10 G01K5/08 G01F23/00

    摘要: This invention discloses a scanning mechanism of an ion implanter. The mechanism is a PR-PRR type parallel mechanism with two subchains and two DOFs, driving the wafer holder to scan when the first subchain and the second subchain are translated in the same direction at the same speed and adjusting the rotational angle of the wafer holder when the first moving link (30) and the second moving link (32) in the first subchain and the second subchain have different translation amounts in the same direction or opposite directions. The driving motor for the scanning mechanism is provided outside the implant chamber. The invention also solves problems like low rigidity and large accumulation errors of existing serial scanning mechanisms and the effect of the electromagnetic field of the motor within the ion implant chamber on the trajectory of the ion beam.

    摘要翻译: 本发明公开了一种离子注入机的扫描机构。 该机构是具有两个子链和两个DOF的PR-PRR型并行机构,当第一子链和第二子链以相同的速度在相同方向上平移时驱动晶片保持器进行扫描,并调整晶片保持器的旋转角度 当第一子链和第二子链中的第一移动链路(30)和第二移动链路(32)在相同方向或相反方向上具有不同的平移量时。 用于扫描机构的驱动电机设置在植入室的外侧。 本发明还解决了现有串行扫描机构的低刚性和大的累积误差以及离子注入室内电动机的电磁场对离子束轨迹的影响的问题。

    NANOMETER-PRECISION SIX-DEGREE-OF-FREEDOM MAGNETIC SUSPENSION MICRO-MOTION TABLE AND APPLICATION THEREOF
    5.
    发明申请
    NANOMETER-PRECISION SIX-DEGREE-OF-FREEDOM MAGNETIC SUSPENSION MICRO-MOTION TABLE AND APPLICATION THEREOF 有权
    NANOMETER-PRECISION六自由度磁悬浮微运动表及其应用

    公开(公告)号:US20130038853A1

    公开(公告)日:2013-02-14

    申请号:US13635168

    申请日:2011-03-15

    IPC分类号: H02K41/02 G03B27/58

    CPC分类号: G03F7/70758 G03F7/70716

    摘要: A nanometer precision six-DOF magnetic suspension micro-stage and the application thereof are provided which are mainly used in semiconductor photolithography devices. The micro-stage includes a cross support and four two-DOF actuators. Each 2-DOF actuator comprises a vertically polarized permanent magnet, a horizontal force coil and a vertical force coil; the permanent magnet being mounted on an end of the cross support, the horizontal force coil and the vertical force coil being arranged on a side of and below the permanent magnet respectively and being spaced apart from the permanent magnet; the cross support and four vertically polarized permanent magnets constitute a mover of the micro-stage; the horizontal force coil and the vertical force coil being fixed by a coil framework respectively and constituting a stator of the micro-stage; and the stator being mounted on a base of the micro-stage. A dual-wafer table positioning system of a photolithography machine may be constructed by two said micro-stages in combination with a two-DOF large stroke linear motor. The present invention features simple structure, large driving force, small mass and absence of cable disturbance, and is possible to realize high precision, high acceleration six-DOF micro-motion.

    摘要翻译: 提供了主要用于半导体光刻设备的纳米精密六自由度磁悬浮微步及其应用。 微型平台包括十字支架和四个双自由度执行器。 每个2-DOF致动器包括垂直极化永磁体,水平力线圈和垂直力线圈; 所述永磁体安装在所述十字支架的一端上,所述水平力线圈和所述垂直力线圈分别设置在所述永久磁铁的一侧和下方并与所述永磁体隔开; 交叉支撑和四个垂直极化永磁体构成微型载物; 水平力线圈和垂直力线圈分别由线圈框架固定并构成微型定子; 并且定子安装在微型台的基座上。 光刻机的双晶片台定位系统可以由两个微步与二自由度大行程直线电机组合构成。 本发明结构简单,驱动力大,质量小,无电缆扰动,可实现高精度,高加速度六自由度微动作。

    TWO-DIMENSIONAL LOCATING METHOD OF MOTION PLATFORM BASED ON MAGNETIC STEEL ARRAY
    6.
    发明申请
    TWO-DIMENSIONAL LOCATING METHOD OF MOTION PLATFORM BASED ON MAGNETIC STEEL ARRAY 有权
    基于磁钢阵列的运动平台二维定位方法

    公开(公告)号:US20130024157A1

    公开(公告)日:2013-01-24

    申请号:US13522788

    申请日:2011-01-18

    IPC分类号: G06F17/11 G01B7/14

    CPC分类号: H02N15/00 G01D5/145

    摘要: A two-dimensional locating method of a motion platform based on a magnetic steel array involves the following steps: placing more than four linear Hall sensors at any different positions within one or more polar distances of the magnetic steel array on the surface of the motion platform in a motion system; determining a magnetic flux density distribution model according to the magnetic steel array; determining the mounting positions of the above-mentioned linear Hall sensors, which are converted into phases with respect to the mass center of the motion platform; recording the magnetic flux density measured values of the linear Hall sensors as the motion proceeds; solving the phases of the mass center of the motion platform in a plane, with the measured values being served as observed quantities and the magnetic flux density distribution model being served as a computation model; and determining the position of the mass center of the motion platform with respect to an initial phase according to the phase, so as to realize the planar location of the motion platform. The present invention provides a simple, fast and robust method for computing mass center positions for a motion system containing a magnetic steel array.

    摘要翻译: 基于磁钢阵列的运动平台的二维定位方法包括以下步骤:将多于四个线性霍尔传感器放置在运动平台表面上的磁钢阵列的一个或多个极距离内的任何不同位置 在运动系统中 根据磁钢阵列确定磁通密度分布模型; 确定上述线性霍尔传感器的安装位置,其相对于运动平台的质心转换成相位; 在运动过程中记录线性霍尔传感器的磁通密度测量值; 解决平面中运动平台质心的相位,测量值作为观测量,磁通密度分布模型用作计算模型; 并根据相位确定运动平台的质量中心相对于初始相位的位置,以便实现运动平台的平面位置。 本发明提供了一种用于计算包含磁钢阵列的运动系统的质心位置的简单,快速和鲁棒的方法。

    MICRO STAGE WITH 6 DEGREES OF FREEDOM
    7.
    发明申请
    MICRO STAGE WITH 6 DEGREES OF FREEDOM 有权
    微型舞台6度自由

    公开(公告)号:US20100187917A1

    公开(公告)日:2010-07-29

    申请号:US12666055

    申请日:2008-03-14

    IPC分类号: H02K41/035

    CPC分类号: G03F7/70758 G03F7/70725

    摘要: A micro stage with 6 degrees of freedom used in super-precise processing and sensing equipment filed is disclosed. The micro stage has three sets of electromagnetic driving units arranged in a horizontal plane for driving the micro stage to obtain movements within the horizontal plane with 3 degrees of freedom in X, Y and θz directions and three electromagnetic driving units arranged in a vertical direction for driving the micro stage to obtain additional movements with 3 degrees of freedom in Z, θx and θy directions. Direct driving by electromagnetic force is used in the invention, resulting in advantages over stacked structures of having a simple structure, a compact profile, a low driven weight center, low stator inertia, etc. Thus, there is no mechanical friction and damping, and high displacement resolution can be provided. The positioning error of a wafer table of a lithographic machine can be compensated, and the leveling and focusing of the lithographic machine can be achieved. The invention is also applicable in super-precise processing and sensing fields for achieving 6 degree-of-freedom motions. The micro stage, which operates on the basis of Lorentz Law, provides a linear relation between the output pushing force and the input electrical current, and thus the movement control technique for it can be well established.

    摘要翻译: 公开了一种用于超精密加工和感测设备的6自由度的微型台。 微型平台具有三组电磁驱动单元,其布置在水平面中,用于驱动微型平台,以在X,Y和...以及z方向上获得3度自由度的水平面内的移动;以及垂直布置的三个电磁驱动单元 方向用于驱动微型平台,以获得Z,...,x和y方向的3个自由度的附加运动。 本发明中采用电磁力直接驱动,结构优越,结构简单,结构紧凑,主动重量低,定子惯性低等优点。因此,不存在机械摩擦和阻尼, 可以提供高位移分辨率。 可以补偿平版印刷机的晶片台的定位误差,并且可以实现平版印刷机的调平和聚焦。 本发明也适用于实现6自由度运动的超精密加工和感测领域。 基于洛伦兹定律运行的微型平台提供了输出推力与输入电流之间的线性关系,因此可以很好地建立起来的运动控制技术。

    Two-dimensional locating method of motion platform based on magnetic steel array
    8.
    发明授权
    Two-dimensional locating method of motion platform based on magnetic steel array 有权
    基于磁钢阵列的运动平台二维定位方法

    公开(公告)号:US09455650B2

    公开(公告)日:2016-09-27

    申请号:US13522788

    申请日:2011-01-18

    IPC分类号: G06F17/11 H02N15/00 G01D5/14

    CPC分类号: H02N15/00 G01D5/145

    摘要: A two-dimensional locating method of a motion platform based on a magnetic steel array involves the following steps: placing more than four linear Hall sensors at any different positions within one or more polar distances of the magnetic steel array on the surface of the motion platform in a motion system; determining a magnetic flux density distribution model according to the magnetic steel array; determining the mounting positions of the above-mentioned linear Hall sensors, which are converted into phases with respect to the mass center of the motion platform; recording the magnetic flux density measured values of the linear Hall sensors as the motion proceeds; solving the phases of the mass center of the motion platform in a plane, with the measured values being served as observed quantities and the magnetic flux density distribution model being served as a computation model; and determining the position of the mass center of the motion platform with respect to an initial phase according to the phase, so as to realize the planar location of the motion platform. The present invention provides a simple, fast and robust method for computing mass center positions for a motion system containing a magnetic steel array.

    摘要翻译: 基于磁钢阵列的运动平台的二维定位方法包括以下步骤:将多于四个线性霍尔传感器放置在运动平台表面上的磁钢阵列的一个或多个极距离内的任何不同位置 在运动系统中 根据磁钢阵列确定磁通密度分布模型; 确定上述线性霍尔传感器的安装位置,其相对于运动平台的质心转换成相位; 在运动过程中记录线性霍尔传感器的磁通密度测量值; 解决平面中运动平台质心的相位,测量值作为观测量,磁通密度分布模型用作计算模型; 并根据相位确定运动平台的质量中心相对于初始相位的位置,以便实现运动平台的平面位置。 本发明提供了一种用于计算包含磁钢阵列的运动系统的质心位置的简单,快速和鲁棒的方法。

    Dual-stage switching system for lithographic machine
    9.
    发明授权
    Dual-stage switching system for lithographic machine 有权
    光刻机双级开关系统

    公开(公告)号:US08284380B2

    公开(公告)日:2012-10-09

    申请号:US12669671

    申请日:2008-03-14

    IPC分类号: G03B27/42 G03B27/58 H02K41/02

    CPC分类号: G03F7/70725 G03F7/70733

    摘要: A dual-stage switching system for lithographic machine includes a wafer stage to be operated in an exposure station and another wafer stage to be operated in a pre-processing station. The two wafer stages are provided on a base, with four 2-DOF driving units capable of moving along X direction and Y direction being provided along the edge of the base, and the wafer stages being disposed in a space surrounded by the four 2-DOF driving units and suspended on an upper surface of the base by air bearings. Each of the 2-DOF driving units includes upper and lower linear guides and a guiding sleeve, with the upper and lower linear guides being installed vertical to each other in their corresponding guiding sleeve. Two adjacent 2-DOF driving units cooperatively drive the wafer stage) to move in the X direction and Y direction.

    摘要翻译: 用于光刻机的双级切换系统包括在曝光站中操作的晶片台和在预处理站中操作的另一晶片台。 两个晶片台设置在基座上,四个2-DOF驱动单元能够沿X方向移动,Y方向沿着基座的边缘设置,并且晶片台设置在由四个2- DOF驱动单元,并通过空气轴承悬挂在基座的上表面上。 每个2自由度驱动单元包括上和下线性引导件和引导套筒,其中上和下线性引导件在其相应的导向套筒中彼此垂直地安装。 两个相邻的2-DOF驱动单元协同驱动晶片台)沿X方向和Y方向移动。

    Micro stage with 6 degrees of freedom
    10.
    发明授权
    Micro stage with 6 degrees of freedom 有权
    微舞台具有6度自由度

    公开(公告)号:US08084897B2

    公开(公告)日:2011-12-27

    申请号:US12666055

    申请日:2008-03-14

    IPC分类号: H02K41/02

    CPC分类号: G03F7/70758 G03F7/70725

    摘要: A micro stage with 6 degrees of freedom used in super-precise processing and sensing equipment fields is disclosed. The micro stage has three sets of electromagnetic driving units arranged in a horizontal plane for driving the micro stage to obtain movements within the horizontal plane with 3 degrees of freedom in X, Y and θz directions and three electromagnetic driving units arranged in a vertical direction for driving the micro stage to obtain additional movements with 3 degrees of freedom in Z, θx and θy directions. Direct driving by electromagnetic force is used in the invention. The invention is also applicable in super-precise processing and sensing fields for achieving 6 degree-of-freedom motions. The micro stage, which operates on the basis of Lorentz Law, provides a linear relation between the output pushing force and the input electrical current.

    摘要翻译: 公开了一种在超精密加工和感测设备领域中使用6自由度的微型台。 微型平台具有三组电磁驱动单元,其布置在水平面中,用于驱动微型平台,以在X,Y和...以及z方向上获得3度自由度的水平面内的移动;以及垂直布置的三个电磁驱动单元 方向用于驱动微型平台,以获得Z,...,x和y方向的3个自由度的附加运动。 本发明使用电磁力直接驱动。 本发明也适用于实现6自由度运动的超精密加工和感测领域。 基于洛伦兹定律运行的微观阶段提供了输出推力与输入电流之间的线性关系。