Abstract:
A unipolar ignition of the invention provides a current waveform at the ignitor plug which initially rises relatively slowly, followed by a transition to a fast rising current which quickly peaks and thereafter slowly dissipates. Such a current waveform provides an initially hotter and longer lasting spark which does not harm the ignitor plug of the system or shorten its life expectancy. Neither does the spark create stress on the solid state circuitry which delivers the energy to the ignitor plug. To provide the foregoing spark and current characteristics, an inductor having a saturable core is in series with the ignitor plug, and it provides an initially high inductance which limits the rate of current rise at the plug as energy is transferred from an energy storage device to the plug. As the current through the inductor increases, its core begins to saturate and the effective inductance begins to decrease, allowing the current to rise more quickly. As energy is transferred to the ignitor plug. the increasing saturation, decreasing inductance and increasing current complement one another, causing the rate of current rise to increase quickly to a high value desirable for ignition. Related features of the invention provide for easy diagnostics of the spark and for timing an ignition sequence and providing a repetition rate which aids in a successful ignition.
Abstract:
The present invention provides a simulator which when used aboard a vehicle normally undetectable by a traffic signal control system (e.g. A.C. energized buried sensing loop type which detects predetermined changes in the characteristics of an electromagnetic field due to the presence of a detectable vehicle therewithin), will substantially simulate the characteristics of a detectable vehicle within its field and thereby cause any activation of the system. Operationally, the simulator derives an electrical signal from the field (e.g. via a receiving antenna), converts the electrical signal into a modified transmittable signal of an amplitude which when impressed upon the field (e.g. via a transmitting antenna) simulates electromagnetic influence of a detectable vehicle therewithin which is sensed by the detector circuitry and activates an associated traffic signal controller to provide the necessary signals (e.g. a green arrow) to allow safe and unobstructed traffic flow at an intersection.
Abstract:
A power supply is described that comprises two or more flyback-type, DC-to-DC converters having substantially the same periods for their respective charge-discharge cycles; inputs from a common power source; outputs that are connected to a common output node and circuitry for controlling the charge-discharge cycles of the two or more converters so that the cycles of one converter is out of phase with respect to the charge-discharge cycles of at least one of the other converters.
Abstract:
An apparatus is described for generating a sustained arc at a spark-generating device. A power converter charges an energy storage device to a voltage that will ionize an air gap of a spark device such as an igniter plug. After the voltage is applied to the spark device, the air gap is ionized and the energy from the energy storage device has been exhausted, energy continues to be supplied to the gap by the converter for a predetermined time period.
Abstract:
An apparatus for controllably generating sparks is provided. The apparatus includes a spark generating device; at least two output stages connected to the spark generating device; means for charging energy storage devices in the output stages and at least partially isolating each of the energy storage devices from the energy storage devices of the other output stages; and, a logic circuit for selectively triggering the output stages to generate a spark. Each of the output stages preferably includes: (1) an energy storage device to store the energy; (2) a controlled switch for selectively discharging the energy storage device; and (3) a network for transferring the energy discharged by the energy storage device to the spark generating device. In accordance with one aspect of the invention, the logic circuit, which is connected to the controlled switches of the output stages, can be configured to fire the stages at different times, in different orders, and/or in different combinations to provide the spark generating device with output pulses having substantially any desired waveshape and energy level to thereby produce a spark having substantially any desired energy level and plume shape at the spark generating device to suit any application.
Abstract:
A device for diagnosing the state of health of an ignition system is provided, where the system includes at least one spark producing channel comprising an exciter, output circuit and igniter plug. The device provides a diagnosis of the state of health for both the exciter and igniter plug by monitoring the high energy pulses at the output of the exciter. By monitoring the ignition system at an intermediate point in the system such as the output of the exciter, the sensor and electronics of the device may be completely contained within the electronic environment of the exciter, thereby avoiding any need for attaching sensors at the output of the system adjacent to the igniter plug in order to diagnose the plug's state of health. As an alternative to the device being built into the ignition system, it can be incorporated into automatic test equipment that produces high energy pulses for delivery to an igniter plug to be tested. The device is capable of diagnosing failure of either the exciter or the igniter plug and may also be configured to detect the impending failure of the plug.
Abstract:
A unipolar ignition of the invention provides a current waveform at the ignitor plug which initially rises relatively slowly, followed by a transition to a fast rising current which quickly peaks and thereafter slowly dissipates. Such a current waveform provides an initially hotter and longer lasting spark which does not harm the ignitor plug of the system or shorten its life expectancy. Neither does the spark create stress on the solid state circuitry which delivers the energy to the ignitor plug. To provide the foregoing spark and current characteristics, an inductor having a saturable core is in series with the ignitor plug, and it provides an initially high inductance which limits the rate of current rise at the plug as energy is transferred from an energy storage device to the plug. As the current through the inductor increases, its core begins to saturate and the effective inductance begins to decrease, allowing the current to rise more quickly. As energy is transferred to the ignitor plug, the increasing saturation, decreasing inductance and increasing current complement one another, causing the rate of current rise to increase quickly to a high value desirable for ignition. Related features of the invention provide for easy diagnostics of the spark and for timing an ignition sequence and providing a repetition rate which aids in a successful ignition.
Abstract:
Apparatus and controls for indicating the position of a stepping motor rotor as it successively steps and without the need for physically driven encoders or pulse generators, characterized by arrangements for sensing the current, or the rate of change of current, flowing in the motor windings. The intelligence indicating when the rotor reaches successive positions is applied advantageously to a utilization device such as a counter to signal the position of a driven load, and is used to control sequenced energization of the motor windings to create the advantages of a closed loop system but without a driven feedback device.
Abstract:
An apparatus for controllably generating sparks is provided. The apparatus includes a spark generating device; at least two output stages connected to the spark generating device; means for charging energy storage devices in the output stages and at least partially isolating each of the energy storage devices from the energy storage devices of the other output stages; and, a logic circuit for selectively triggering the output stages to generate a spark. Each of the output stages preferably includes: (1) an energy storage device to store the energy; (2) a controlled switch for selectively discharging the energy storage device; and (3) a network for transferring the energy discharged by the energy storage device to the spark generating device. In accordance with one aspect of the invention, the logic circuit, which is connected to the controlled switches of the output stages, can be configured to fire the stages at different times, in different orders, and/or in different combinations to provide the spark generating device with output pulses having substantially any desired waveshape and energy level to thereby produce a spark having substantially any desired energy level and plume shape at the spark generating device to suit any application.
Abstract:
An apparatus and method are disclosed for reducing peaks of operating power drawn from a power source by a multi-channel system. Each channel of the system drives a load and demands operating power from the power source in an intermittent manner. Power is supplied to the multi-channel system from the power source. Operating power from the power source is drawn in an intermittent manner into each of two or more channels of the multi-channel system. The drawing of the operating power is by the two or more channels so that occurrences of peak operating power launched in a first channel do not fully overlap the occurrences of peak operating power in a second channel.