Motor temperature control technique with temperature override

    公开(公告)号:US10782057B2

    公开(公告)日:2020-09-22

    申请号:US16234549

    申请日:2018-12-27

    Abstract: A method of cooling a motor coupled to a compressor of a chiller includes adjusting a position of a motor cooling valve located fluidly between the motor and a refrigerant source, using a motor temperature control system coupled to the motor cooling valve to regulate an amount of refrigerant introduced into the motor from the condenser according to a temperature control scheme performed as a function of a monitored temperature in the motor, a first temperature threshold, and a second temperature threshold lower than the first temperature threshold. The temperature control scheme includes a motor cooling control process that adjusts the position of the motor cooling valve based on a stator winding temperature set point relating to stator windings of the motor. A proportionally limited close command override associated with a first temperature range above the second temperature threshold proportionally limits a close command provided to the motor cooling valve.

    MOTOR TEMPERATURE CONTROL TECHNIQUE WITH TEMPERATURE OVERRIDE

    公开(公告)号:US20190203998A1

    公开(公告)日:2019-07-04

    申请号:US16234549

    申请日:2018-12-27

    Abstract: A method of cooling a motor coupled to a compressor of a chiller includes adjusting a position of a motor cooling valve located fluidly between the motor and a refrigerant source, using a motor temperature control system coupled to the motor cooling valve to regulate an amount of refrigerant introduced into the motor from the condenser according to a temperature control scheme performed as a function of a monitored temperature in the motor, a first temperature threshold, and a second temperature threshold lower than the first temperature threshold. The temperature control scheme includes a motor cooling control process that adjusts the position of the motor cooling valve based on a stator winding temperature set point relating to stator windings of the motor. A proportionally limited close command override associated with a first temperature range above the second temperature threshold proportionally limits a close command provided to the motor cooling valve.

    Variable speed drive control for chiller coast-through

    公开(公告)号:US10337781B2

    公开(公告)日:2019-07-02

    申请号:US14421058

    申请日:2013-08-21

    Abstract: A chiller system includes a compressor, a condenser and an evaporator in fluid communication. A motor drives the compressor. A variable speed drive powers the motor. An oil heater and pump system circulate heated lubricating oil in the compressor. A control panel is arranged to determine whether an input parameter is greater than or equal to a threshold parameter; deactivate the VSD in response to sensing that the input parameter is less than the threshold parameter; determine at least one chiller capacity control parameter at a point when the VSD is deactivated, and maintain the at least one chiller capacity control parameter while the VSD is deactivated; determine that the input parameter has been restored; determine a motor rotation and motor rotational speed; and in response to determining that the input parameter is restored and the motor is rotating in a forward direction, reactivate the VSD.

    Variable speed drive control for chiller coast-through

    公开(公告)号:US11480373B2

    公开(公告)日:2022-10-25

    申请号:US16459432

    申请日:2019-07-01

    Abstract: A chiller system includes a compressor, a condenser and an evaporator in fluid communication. A motor drives the compressor. A variable speed drive powers the motor. An oil heater and pump system circulate heated lubricating oil in the compressor. A control panel is arranged to determine whether an input parameter is greater than or equal to a threshold parameter; deactivate the VSD in response to sensing that the input parameter is less than the threshold parameter; determine at least one chiller capacity control parameter at a point when the VSD is deactivated, and maintain the at least one chiller capacity control parameter while the VSD is deactivated; determine that the input parameter has been restored; determine a motor rotation and motor rotational speed; and in response to determining that the input parameter is restored and the motor is rotating in a forward direction, reactivate the VSD.

    CONTROL SYSTEM FOR HVAC UNIT
    7.
    发明申请

    公开(公告)号:US20210010732A1

    公开(公告)日:2021-01-14

    申请号:US16768830

    申请日:2018-12-04

    Abstract: A heating, ventilating, and air conditioning (HVAC) system that includes a vapor compression system having a refrigerant, a compressor of the vapor compression system configured to circulate the refrigerant through the vapor compression system, an expansion device of the vapor compression system configured to adjust a flow of the refrigerant through the vapor compression system, and a controller configured to adjust a position of the expansion device based on a measured amount of superheat of the refrigerant entering the compressor, a measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof, such that the measured amount of superheat of the refrigerant entering the compressor reaches a target amount of superheat, the measured discharge temperature of the refrigerant leaving the compressor reaches a target discharge temperature, or a combination thereof.

    Expansion device control system for heating, ventilation, and air conditioning (HVAC) unit

    公开(公告)号:US11340002B2

    公开(公告)日:2022-05-24

    申请号:US16768830

    申请日:2018-12-04

    Abstract: A heating, ventilating, and air conditioning (HVAC) system that includes a vapor compression system having a refrigerant, a compressor of the vapor compression system configured to circulate the refrigerant through the vapor compression system, an expansion device of the vapor compression system configured to adjust a flow of the refrigerant through the vapor compression system, and a controller configured to adjust a position of the expansion device based on a measured amount of superheat of the refrigerant entering the compressor, a measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof, such that the measured amount of superheat of the refrigerant entering the compressor reaches a target amount of superheat, the measured discharge temperature of the refrigerant leaving the compressor reaches a target discharge temperature, or a combination thereof.

Patent Agency Ranking