摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
摘要:
Techniques are provided for use in a pacemaker or implantable cardioverter/defibrillator (ICD) for distinguishing cardiac ischemia from other conditions affecting the morphology of electrical cardiac signals sensed within a patient, such as hypoglycemia, hyperglycemia or other systemic conditions. In one example, the device detects changes in morphological features of cardiac signals indicative of possible cardiac ischemia within the patient, such as changes in ST segment elevation within an intracardiac electrogram (IEGM). The device determines whether the changes in the morphological features are the result of spatially localized changes within a portion of the heart and then distinguishes cardiac ischemia from other conditions affecting the morphology of electrical cardiac signals based on that determination. In another example, the device exploits the interval between the peak of a T-wave (Tmax) and the end of the T-wave (Tend). A significant increase in the Tend−Tmax interval is indicative of ischemia rather than a systemic condition.
摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.
摘要:
Techniques are provided for detecting abnormal respiration within a patient based upon intracardiac electrogram (IEGM) signals or other electrical cardiac signals. Briefly, abnormal respiration is detected using a pattern recognition trained to discriminate normal and abnormal respiration based on morphological parameters and interval-based parameters extracted from the IEGM signals. In addition, techniques are described for distinguishing among different cardiac rhythm types within the patient while using one or more pattern classifiers or other pattern recognition devices.
摘要:
A cardiac analysis system is provided that includes an implantable medical device (IMD), at least one sensor, and an external device. The IMD has electrodes positioned proximate to a heart that sense first cardiac signals of the heart and associated with a clinical ventricular tachycardia (VT) event and second cardiac signals associated with an induced VT event. The sensor measures first and second cardiac parameters of the heart associated with the clinical and induced VT events, respectively. The external device is configured to receive the first and second cardiac signals associated with the clinical and the induced VT events and the first and second cardiac parameters associated with the clinical and the induced VT events. The external device compares the first and second cardiac signals and compares the first and second cardiac parameters to determine if the clinical and induced VT events are a common type of VT event.
摘要:
A cardiac analysis system is provided that includes an implantable medical device (IMD), at least one sensor, and an external device. The IMD has electrodes positioned proximate to a heart that sense first cardiac signals of the heart and associated with a clinical ventricular tachycardia (VT) event and second cardiac signals associated with an induced VT event. The sensor measures first and second cardiac parameters of the heart associated with the clinical and induced VT events, respectively. The external device is configured to receive the first and second cardiac signals associated with the clinical and the induced VT events and the first and second cardiac parameters associated with the clinical and the induced VT events. The external device compares the first and second cardiac signals and compares the first and second cardiac parameters to determine if the clinical and induced VT events are a common type of VT event.
摘要:
An implantable cardiac defibrillation device provides pre-shock stimuli to reduce the defibrillation threshold (DFT). The device includes an arrhythmia detector that detects fibrillation of a fibrillating chamber of a heart and a pulse generator that provides a fibrillation therapy output responsive to the arrhythmia detector detecting fibrillation of the fibrillating chamber of the heart. The therapy output includes a defibrillating shock having an output magnitude exceeding a temporary defibrillation threshold of the fibrillating chamber and at least one pre-defibrillating shock output pulse that reduces an initial defibrillation threshold of the fibrillating chamber to the temporary defibrillation threshold. An electrode system having at least two defibrillation electrodes delivers both the at least one pre-defibrillating shock output pulse to the heart and the defibrillating shock to the fibrillating chamber of the heart.