Path monitoring system (PMS) controller or ingress node based multiprotocal label switching (MPLS) ping and traceroute in inter- autonomous system (AS) segment routing (SR) networks

    公开(公告)号:US11025522B2

    公开(公告)日:2021-06-01

    申请号:US16403540

    申请日:2019-05-04

    Abstract: Echo or traceroute functionality is supported in a path spanning multiple autonomous systems (ASes) having segment routing (SR) enabled, the path including an ingress node and an egress node, by: (a) obtaining a return label stack to reach the ingress node from either (A) the egress node, or (B) a transit node in the path; (b) obtaining a label stack to reach, from the ingress node, either (A) the egress node, or (B) the transit node; (c) generating a request message including the return label stack; and (d) sending the request message towards either (A) the egress node, or (B) the transit node using the label stack. The example method may further include: (e) receiving, by either (A) the egress node, or (B) the transit node, the request message, wherein the request message includes information for performing a validity check; (f) performing a validity check using the information included in the request message to generate validity information; (g) generating a reply message including the validity information and information from the return label stack; and (h) sending the reply message towards the ingress node using information from the return label stack included in the request message.

    Time to live (TTL) handing for segment routing ping/traceroute

    公开(公告)号:US10917337B1

    公开(公告)日:2021-02-09

    申请号:US16250631

    申请日:2019-01-17

    Abstract: An improved traceroute mechanism for use in a label-switched path (LSP) is provided by (a) receiving, by a device in the LSP, an echo request message, wherein the echo request includes a label stack having a least one label, and wherein each of the at least one label has an associated time-to-live (TTL) value; (b) responsive to receiving the echo request, determining by the device, whether or not the device is a penultimate hop popping (PHP) device for the outermost label of the label stack; and (c) responsive to determining that the device is the PHP device for the outermost label of the label stack, (1) generating an echo reply message corresponding to the echo request message, wherein the echo reply message is encoded to indicate that the device is the PHP device for the outermost label of the label stack, and (2) sending the echo reply message back towards a source of the echo request message. Responsive to receiving the echo reply message by the ingress of the LSP defined by the outermost label of the label stack, the ingress may (a) determine whether or not the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, and (b) responsive to a determination that the received echo reply message was sourced from the PHP of the LSP defined by the outermost label of the label stack, (1) generate a next echo request in which the TTL value associated with the outermost label in the label stack is increased and in which the TTL value associated with a next to outermost label, if any, in the label stack is incremented, and (2) send the next echo request message on the LSP defined by the outermost label of the label stack.

    Coordinating pseudowire connection characteristics and multi-homed provider edge device capabtilities

    公开(公告)号:US11381501B2

    公开(公告)日:2022-07-05

    申请号:US16947453

    申请日:2020-08-03

    Abstract: A device may store first information regarding a first pseudowire connection with a first device, wherein the first pseudowire connection provides access to an Ethernet virtual private network (EVPN) to communicate with a host device. The device may store second information regarding a second pseudowire connection with a second device, wherein the second pseudowire connection provides access to the EVPN to communicate with the host device. The device may receive a message that includes a configuration identifier and identify the configuration identifier. The device may change a first characteristic of the first pseudowire connection based on the configuration identifier. The device may change a second characteristic of the second pseudowire connection based on the configuration identifier. The device may receive data from the host device based on changing the first characteristic of the first pseudowire connection and changing the second characteristic of the second pseudowire connection.

    MULTICAST LOAD BALANCING IN MULTIHOMING EVPN NETWORKS

    公开(公告)号:US20180287946A1

    公开(公告)日:2018-10-04

    申请号:US15655210

    申请日:2017-07-20

    Abstract: In general, techniques are described for load-balancing responsibility for forwarding of multicast traffic into an active-active Ethernet segment between two or more multi-homed provider edge (PE) routers in an Ethernet Virtual Private Network (EVPN). In one example, a PE router may receive an Internet Group Management Protocol (IGMP) join report for a multicast group. The PE router may send join synch routes used to synchronize the join report for the multicast group across the Ethernet segment. The PE router may deterministically determine whether the PE router is configured to be an elected multicast forwarder for one of a plurality of multicast groups. If the PE router is elected a multicast forwarder, the PE router may configure a forwarding state of the PE router to ignore a designated forwarder calculation and to forward the multicast traffic into the Ethernet segment regardless of whether the PE router is a designated forwarder.

Patent Agency Ranking