Abstract:
A power control method and apparatus in consideration of a driving environment of a hybrid vehicle is provided. The method and apparatus for controlling a power of a hybrid vehicle enable real-time application while having adaptability to various driving environment. For a hybrid vehicle, the power control method and apparatus provide optimum fuel efficiency performance in any driving environment through power control considering the current driving environment in real time.
Abstract:
A dual mode twisted string actuator using a clutch is provided. The twisted string actuator according to an exemplary embodiment of the present disclosure includes: a first actuator; a first coupler which is rotated by the first actuator; a shaft which is coupled to and interlocked with the first coupler; a second coupler which is selectively interlocked with the first coupler and comprises a plurality of string receiving portions; and a string which has one end fixed to the first coupler and the other end fixed to a moving body through the string receiving portions of the second coupler. Accordingly, it is possible to reduce the size of the existing large and heavy transmission system and to miniaturize and lighten the size of the entire drive system.
Abstract:
A hybrid vehicle includes: an engine; a driving motor/generator connected to an output shaft of the engine; a connection unit disposed between the engine and the driving motor/generator to separate the engine from the driving motor/generator when the engine is stopped and to connect the engine to the driving motor/generator when the engine is operated; a manual transmission connected to the driving motor/generator, for directly varying gear ratio without using an engine clutch according to a driving speed and a torque generated by the driving motor/generator and/or the engine; a position sensor for detecting a position of a manual gearshift lever; and a central control unit connected to the engine, the driving motor/generator, the connection unit, and the manual transmission. In order to perform a gearshift of the manual transmission, the central control unit separates the connection unit disposed between the engine and the driving motor/generator when the vehicle is stopped or driven at a preset speed or lower or connects the connection unit when the vehicle is driven at the preset speed or higher, and controls the driving motor/generator and/or the engine according to the detected position of the manual gearshift lever to adjust a speed of an input shaft of the manual transmission.
Abstract:
A motor control system is provided for compensating disturbance. The system includes a controller that supplies an input voltage to a motor based on the difference between a current command value to a motor and an actual current of the motor. A motor modeling part outputs a motor output current based on an input voltage from the controller and a disturbance observation part is formed as a reverse model of the motor modeling part to remove current noise using a current differentiation filtering method. Additionally, a disturbance compensation amount determination part determines a disturbance compensation amount based on the disturbance estimated by the disturbance observation part.
Abstract:
A system for compensating for disturbance of a motor for motor driven power steering is provided. The system for compensating for disturbance of a motor for motor driven power steering compensates for the disturbance based on a closed loop based input value prediction model unit, separately predicts an input value from a command by a closed loop based input value prediction model unit, and compensates for disturbance in accordance with a desired disturbance frequency band when there is a difference between the predicted input value and an input value error-compensated by a feedback controller.
Abstract:
A motor control system is provided for compensating disturbance. The system includes a controller that supplies an input voltage to a motor based on the difference between a current command value to a motor and an actual current of the motor. A motor modeling part outputs a motor output current based on an input voltage from the controller and a disturbance observation part is formed as a reverse model of the motor modeling part to remove current noise using a current differentiation filtering method. Additionally, a disturbance compensation amount determination part determines a disturbance compensation amount based on the disturbance estimated by the disturbance observation part.
Abstract:
A power control method and apparatus in consideration of a driving environment of a hybrid vehicle is provided. The method and apparatus for controlling a power of a hybrid vehicle enable real-time application while having adaptability to various driving environment. For a hybrid vehicle, the power control method and apparatus provide optimum fuel efficiency performance in any driving environment through power control considering the current driving environment in real time.
Abstract:
Disclosed is a method and apparatus for real-time estimation of full parameters of a permanent magnet synchronous motor. According to this method and apparatus, it is possible to estimate in real time all four parameters of a permanent magnet synchronous motor without additional signal injection. In addition to the state equation, the “stator current ripple model” is additionally used to fundamentally solve the rank deficiency problem in the state equation without injecting additional signals. All four parameters of a permanent magnet synchronous motor can be estimated in real time.
Abstract:
A system for compensating for disturbance of a motor for motor driven power steering is provided. The system for compensating for disturbance of a motor for motor driven power steering compensates for the disturbance based on a closed loop based input value prediction model unit, separately predicts an input value from a command by a closed loop based input value prediction model unit, and compensates for disturbance in accordance with a desired disturbance frequency band when there is a difference between the predicted input value and an input value error-compensated by a feedback controller.