Abstract:
An electronic apparatus includes a thermopile array sensor, a reflector, and a temperature detection unit. The thermopile array sensor includes a plurality of thermopile elements arranged in a two-dimensional array pattern and a temperature detection surface divided into a plurality of predetermined regions aligned in vertical and horizontal directions, and the thermopile elements output a temperature detection signal corresponding to a temperature of the respective predetermined regions. The reflector is set at an angle to reflect infrared light emitted from a measurement point located outside of a viewing angle of the thermopile array sensor, so as to allow the infrared light to be incident on the temperature detection surface. The temperature detection unit detects the temperature on the basis of the temperature detection signal outputted from each of the thermopile elements. The thermopile array sensor and the reflector are located inside the electronic apparatus.
Abstract:
An image forming apparatus includes an operating section, a sensor section, an oscillating mechanism, and a control section. The operating section receives an operation command from an operator. The sensor section includes a pyroelectric infrared sensor configured to detect the presence of an object based on a change in infrared rays. The oscillating mechanism is configured to cause the sensor section to perform an oscillating movement. The control section is configured to control the oscillating mechanism to start the oscillating movement upon satisfaction of a condition that the operator as the object operates the operating section within a predetermined period of time after the object has been detected by the sensor section.
Abstract:
A developing device includes multiple developing units, and multiple toner concentration sensors. The multiple developing units contain respective developers. The multiple toner concentration sensors have respective LC oscillator circuits and are disposed at the respective multiple developing units. A capacitor constituting the LC oscillator circuit differs in capacitance at each of the toner concentration sensors installed on the multiple developing units.
Abstract:
A developing device includes multiple developing units, and multiple toner concentration sensors. The multiple developing units contain respective developers. The multiple toner concentration sensors have respective LC oscillator circuits and are disposed at the respective multiple developing units. A capacitor constituting the LC oscillator circuit differs in capacitance at each of the toner concentration sensors installed on the multiple developing units.
Abstract:
An electronic apparatus includes a thermopile array sensor, a reflector, and a temperature detection unit. The thermopile array sensor includes a plurality of thermopile elements arranged in a two-dimensional array pattern and a temperature detection surface divided into a plurality of predetermined regions aligned in vertical and horizontal directions, and the thermopile elements output a temperature detection signal corresponding to a temperature of the respective predetermined regions. The reflector is set at an angle to reflect infrared light emitted from a measurement point located outside of a viewing angle of the thermopile array sensor, so as to allow the infrared light to be incident on the temperature detection surface. The temperature detection unit detects the temperature on the basis of the temperature detection signal outputted from each of the thermopile elements. The thermopile array sensor and the reflector are located inside the electronic apparatus.
Abstract:
A signal generation portion of an image forming apparatus generates a different level of signal according to an output value of a pyroelectric sensor. A recognition portion determines a measurement value on the speed of change of the signal and recognizes which of a first range and a second range the measurement value is. In a power supply portion, when the measurement value falls within the first range in a mode other than a power-saving mode, and the image forming apparatus is brought into the power-saving mode, and, when the measurement value falls within the second range in the power-saving mode, the power-saving mode is cancelled.
Abstract:
An electronic apparatus includes a display unit that includes a display screen including a touch panel configured to display an image and to accept an input from an operator made by touching the touch panel, a touch position detection unit that detects a position touched by the operator on the display screen of the display unit, upon receipt of a detection signal outputted from the display unit according to detection by the touch panel, a calibration execution unit that executes calibration to correct a shift of the touch position detected by the touch position detection unit, and a human body sensor that outputs a detection signal upon detecting that the operator has come to a position spaced from the electronic apparatus by a predetermined distance. The calibration execution unit executes the calibration upon receipt of the detection signal from the human body sensor.
Abstract:
An image forming apparatus includes an operating section, a sensor section, an oscillating mechanism, and a control section. The operating section receives an operation command from an operator. The sensor section includes a pyroelectric infrared sensor configured to detect the presence of an object based on a change in infrared rays. The oscillating mechanism is configured to cause the sensor section to perform an oscillating movement. The control section is configured to control the oscillating mechanism to start the oscillating movement upon satisfaction of a condition that the operator as the object operates the operating section within a predetermined period of time after the object has been detected by the sensor section.
Abstract:
An abnormality detection device for an image forming apparatus detects an abnormality in the image forming apparatus which includes a heating belt looped around a heating roller and a fixing roller. The abnormality detection device for an image forming apparatus includes: thermistors for detecting temperatures of one widthwise end portion and the other widthwise end portion of the heating belt; a temperature difference detection section for determining whether or not a temperature difference between the temperature of the one end portion and the temperature of the other end portion which are detected by the thermistors is greater than a predetermined value; and a judgment section for judging that an abnormality has occurred in the image forming apparatus when it is determined in the temperature difference detection section that the temperature difference is greater than the predetermined value.
Abstract:
In an image forming apparatus, a first detection portion includes a pyroelectric sensor and detects the upper half of the human body. A first signal generation portion generates a first signal whose level varies according to the output value of the pyroelectric sensor. A second detection portion includes a pyroelectric sensor and detects a lower area than the first detection portion. A second signal generation portion generates a second signal whose level varies according to the output value of the pyroelectric sensor. A storage portion stores discrimination data including data defining, with respect to the waveforms of the first and second signals, a condition for recognizing a human moving toward the image forming apparatus and a condition for recognizing a human crossing a detection area of the pyroelectric sensors. A recognition portion recognizes the direction of movement of a human.