摘要:
The present disclosure includes presentations with pages that access data from backend applications. In one embodiment, a system is disclosed where presentation pages are sent from a server and received in a client. The presentation pages may include static pages and interactive pages. Interactive pages include active regions that may be selected to access features on server applications. In one embodiment, an active region may be a portion of a presentation page that is selectable to access an application feature. In another embodiment, an active region may be a presentation page that interactively exposes an application feature in the presentation page.
摘要:
The present disclosure includes presentations with pages that access data from backend applications. In one embodiment, a system is disclosed where presentation pages are sent from a server and received in a client. The presentation pages may include static pages and interactive pages. Interactive pages include active regions that may be selected to access features on server applications. In one embodiment, an active region may be a portion of a presentation page that is selectable to access an application feature. In another embodiment, an active region may be a presentation page that interactively exposes an application feature in the presentation page.
摘要:
The present disclosure includes presentations with pages that access data from backend applications. In one embodiment, a system is disclosed where presentation pages are sent from a server and received in a client. The presentation pages may include static pages and interactive pages. Interactive pages include active regions that may be selected to access features on server applications. In one embodiment, an active region may be a portion of a presentation page that is selectable to access an application feature. In another embodiment, an active region may be a presentation page that interactively exposes an application feature in the presentation page.
摘要:
The present disclosure includes presentations with pages that access data from backend applications. In one embodiment, a system is disclosed where presentation pages are sent from a server and received in a client. The presentation pages may include static pages and interactive pages. Interactive pages include active regions that may be selected to access features on server applications. In one embodiment, an active region may be a portion of a presentation page that is selectable to access an application feature. In another embodiment, an active region may be a presentation page that interactively exposes an application feature in the presentation page.
摘要:
The present invention provides methods for enhancing the efficiency of cell electroporation using dielectrophoresis-assisted cell localization and uses thereof in a microfluidic biochip system. Cells are first subject to dielectrophoresis and localized to regions where the electric field intensity is high enough to render cells electroporated. The invention enhances the efficiency of in situ cell electroporation on a traditional microfluidic biochip.
摘要:
A slow release apparatus for slowly releasing a compound in a nasal passage. The apparatus comprises a connection mechanism, two expansion mechanisms, and two release mechanisms; two ends of the connection mechanism are respectively integrally or detachably connected to the two expansion mechanisms that are symmetrically arranged in nasal passages at two sides; and the two release mechanisms are symmetrically arranged, and each release mechanism is correspondingly provided in one of the expansion mechanisms. The slow release apparatus is convenient to carry, and capable of slowly releasing a compound in the nasal passage and synchronously expanding the nasal passage to ensure smooth breathing, while considering functionality, practicability and comfort.
摘要:
FIG. 1 is a first perspective view of a walker showing my new design; FIG. 2 is a second perspective view thereof; FIG. 3 is a front view thereof; FIG. 4 is a back view thereof; FIG. 5 is a left side view thereof; FIG. 6 is a right side view thereof; FIG. 7 is a top view thereof; and, FIG. 8 is a bottom view thereof. The broken lines shown in the drawings depict portions of the walker that form no part of the claimed design.
摘要:
A method of moving a string assembly within a wellbore is disclosed. In some embodiments, the method comprises moving the string assembly within the wellbore; obtaining surface data regarding at least one parameter associated with moving the string assembly within the wellbore over a range of depths; modeling the at least one parameter over the range of depths for a plurality of assumed friction factors to obtain modeled data for each assumed friction factor; calculating a derivative of the surface data over the range of depths; calculating a derivative of the modeled data over the range of depths; comparing the derivative of the surface data to the derivative of the modeled data; determining one or more local friction factors for the range of depths based on the comparison; and adjusting at least one string assembly operating parameter based on the one or more local friction factors.
摘要:
Methods for drilling a wellbore within a subsurface region and drilling assemblies and systems that include and/or utilize the methods are disclosed herein. The methods include receiving a plurality of drilling performance indicator maps, normalizing the plurality of drilling performance indicator maps to generate a plurality of normalized maps, adaptive trending of the plurality of drilling performance indicator maps to generate a plurality of trended maps, summing the plurality of trended maps to generate an objective map, selecting a desired operating regime from the objective map, and adjusting at least one drilling operational parameter of a drilling rig based, at least in part, on the desired operating regime.
摘要:
A method of moving a string assembly within a wellbore is disclosed. In some embodiments, the method comprises moving the string assembly within the wellbore; obtaining surface data regarding at least one parameter associated with moving the string assembly within the wellbore over a range of depths; modeling the at least one parameter over the range of depths for a plurality of assumed friction factors to obtain modeled data for each assumed friction factor; calculating a derivative of the surface data over the range of depths; calculating a derivative of the modeled data over the range of depths; comparing the derivative of the surface data to the derivative of the modeled data; determining one or more local friction factors for the range of depths based on the comparison; and adjusting at least one string assembly operating parameter based on the one or more local friction factors.