摘要:
A method for controlling a compressor of vehicles improves fuel efficiency by accumulating a cold air energy when a speed-reducing condition occurs and using the accumulated cold air energy when a release condition occurs. A device for controlling a compressor of vehicles may include a sensor module including a cabin temperature sensor detecting a cabin temperature of the vehicle, an outdoor temperature sensor detecting an outdoor temperature of the vehicle, an evaporator temperature sensor detecting a temperature of a cooling medium in an evaporator (evaporator temperature), a vehicle speed sensor detecting a vehicle speed, and a brake sensor detecting an operation of a brake pedal, an injector injecting a fuel for driving the vehicle, an air conditioning system including a condenser condensing and liquefying the cooling medium, an evaporator evaporating the liquefied cooling medium, the compressor compressing the cooling medium, a temperature control door controlling a temperature of air flowing into a cabin of the vehicle, an intake door selectively distributing an inner air or an outer air into the cabin of the vehicle, and a blower blowing the air to the intake door, and a controller controlling operations of the injector and the air conditioning system, wherein the controller accumulates a cold air energy by increasing an operation of the compressor in a case that a speed-reducing condition occurs, and the air conditioning system uses the accumulated cold air energy by decreasing the operation of the compressor in a case that a release condition occurs.
摘要:
An automatic defogging system of a vehicle according to an exemplary embodiment of the present invention includes: an input unit used for receiving a directly sensed window relative humidity value from a defogging sensor so as to directly sense a humidity generation degree in a window; a controller which controls operations of an air conditioning system programmed as a type of a logic that is selectively and phasedly controllable depending on the sensed relative humidity and; an output unit that is a selection mode of the air conditioning system that can be controlled by the controller. Accordingly, an automatic defogging system of a vehicle and a control method thereof automatically removes fog or frost on an inner surface of a window while maintaining comfortable conditions inside a vehicle.
摘要:
A device for controlling a compressor of vehicles may include a sensor module including a cabin temperature sensor, an outdoor temperature sensor, an evaporator temperature sensor detecting a temperature of cooling medium in an evaporator, a vehicle speed sensor, and a brake sensor, an injector, an air conditioning system including a condenser, an evaporator, the compressor, a temperature control door controlling a temperature of air flowing into a cabin, an intake door selectively distributing an inner air or an outer air into the cabin, and a blower blowing the air to the intake door, and a controller controlling the injector and the air conditioning system, wherein the controller accumulates a cold air energy by increasing an operation of the compressor if a speed-reducing condition occurs, and the air conditioning system uses the accumulated cold air energy by decreasing the operation of the compressor if a release condition occurs.
摘要:
An automatic defogging system of a vehicle according to an exemplary embodiment of the present invention includes: an input unit used for receiving a directly sensed window relative humidity value from a defogging sensor so as to directly sense a humidity generation degree in a window; a controller which controls operations of an air conditioning system programmed as a type of a logic that is selectively and phasedly controllable depending on the sensed relative humidity and; an output unit that is a selection mode of the air conditioning system that can be controlled by the controller. Accordingly, an automatic defogging system of a vehicle and a control method thereof automatically removes fog or frost on an inner surface of a window while maintaining comfortable conditions inside a vehicle.
摘要:
A device and a method for a controlling compressor of vehicles may include a cabin temperature sensor, an outdoor temperature sensor, an evaporator temperature sensor, an engine speed sensor, and a throttle position sensor detecting a throttle opening, a condenser, an evaporator, a temperature control door controlling a temperature of an air flowed in a cabin, an intake door selectively flowing an inner air or an outer air in the cabin, and a blower blowing the air to the intake door, and a controller controlling an operation of the air conditioning system, wherein the controller decides a acceleration mode and an allowable temperature at each acceleration mode when an acceleration condition occurs, and decreases an operation of the compressor according to a difference between the evaporator temperature and the allowable temperature.
摘要:
A surface plasmon polariton modulator capable of locally varying a physical property of a dielectric material to control a surface plasmon polariton. The surface plasmon polariton modulator includes a dielectric layer, including first and second dielectric portions, which is interposed between two metal layers. The second dielectric portion has a refractive index which varies with an electric field, a magnetic field, heat, a sound wave, or a chemical and/or biological operation applied thereto. The surface plasmon polariton modulator is configured to control one of an advancing direction, an intensity, a phase, or the like of a surface plasmon using an electric signal. The surface plasmon polariton modulator can operate as a surface plasmon polariton multiplexer or a surface plasmon polariton demultiplexer.
摘要:
The present invention relates to the heat-radiation structure of a pin-type power Light Emitting Diode (LED). The heat-radiation structure includes an LED device, first and second lead frames, a mold unit, and a heat sink. The first lead frame is electrically connected to the LED device, and extended forward to the outside in order to supply power to the LED device. The second lead frame is provided to face the first lead frame, and extended forward to the outside. The mold unit includes the LED device, and molds the upper portions of the first and second lead frames out transparent material. The heat sink is provided at a bottom of the mold unit so that the lead frames penetrate therethrough, fixed into any of the two lead frames, and configured to receive heat from the lead frame which comes into contact therewith and to radiate the heat to the outside.