摘要:
An optical communication equipment includes a semiconductor laser element, an image-forming element, an optical fiber and a substrate for mounting the semiconductor laser element, the image-forming element and the optical fiber. An optical output of the semiconductor laser element is adapted to be provided to the optical fiber via the image-forming element. The image-forming element is mounted in a V-groove formed in the substrate and having a substantially “V”-shaped cross-section. A shortest distance between a light spot of the semiconductor laser element and an optical axis of the image-forming element is 1 mm at most and the image-forming element substantially satisfies the sine condition.
摘要:
An optical module for an optical device and an optical fiber is constituted by a pre-molded plastic package. In forming the plastic package, the main flowing direction of the molding resin is substantially parallel with the optical axis of the optical fiber. The optical module is formed by molding the resin by an injection method using pressure and then solidifying the resin. When the plastic package is formed by comprehensive molding, the flowing direction of the resin is parallel with the optical axis direction of the optical fiber to be installed in the optical module. As a result, for comprehensive molding, the molding pressure applied to the optical fiber is reduced. By using the resin case that is formed, the resulting package exhibits high rigidity and low thermal expansion properties in connection with the flowing direction of the resin, thus reducing the external stress and thermal stress applied to the optical fiber.
摘要:
An optical module for an optical device and an optical fiber is constituted by a pre-molded plastic package. In forming the plastic package, the main flowing direction of the molding resin is substantially parallel with the optical axis of the optical fiber. The optical module is formed by molding the resin by injection using pressure and then solidifying the resin. When the plastic package is formed by comprehensive molding, the flowing direction of the resin is parallel with the optical axis direction of the optical fiber to be installed in the optical module. As a result, for comprehensive molding, the molding pressure applied to the optical fiber is reduced. By using the resin case that is formed, the resulting package exhibits high rigidity and low thermal expansion properties in connection with the flowing direction of the resin, thus reducing the external stress and thermal stress applied to the optical fiber.
摘要:
An optical module for an optical device and an optical fiber is constituted by a pre-molded plastic package. In forming the plastic package, the main flowing direction of the molding resin is substantially parallel with the optical axis of the optical fiber. The optical module is formed by molding the resin by an injection method using pressure and then solidifying the resin. When the plastic package is formed by comprehensive molding, the flowing direction of the resin is parallel with the optical axis direction of the optical fiber to be installed in the optical module. As a result, for comprehensive molding, the molding pressure applied to the optical fiber is reduced. By using the resin case that is formed, the resulting package exhibits high rigidity and low thermal expansion properties in connection with the flowing direction of the resin, thus reducing the external stress and thermal stress applied to the optical fiber.
摘要:
An optical module for an optical device and an optical fiber is constituted by a pre-molded plastic package. In forming the plastic package, the main flowing direction of the molding resin is substantially parallel with the optical axis of the optical fiber. The optical module is formed by molding the resin by injection using pressure and then solidifying the resin. When the plastic package is formed by comprehensive molding, the flowing direction of the resin is parallel with the optical axis direction of the optical fiber to be installed in the optical module. As a result, for comprehensive molding, the molding pressure applied to the optical fiber is reduced. By using the resin case that is formed, the resulting package exhibits high rigidity and low thermal expansion properties in connection with the flowing direction of the resin, thus reducing the external stress and thermal stress applied to the optical fiber.
摘要:
An optical module for an optical device and an optical fiber is constituted by a pre-molded plastic package. In forming the plastic package, the main flowing direction of the molding resin is substantially parallel with the optical axis of the optical fiber. The optical module is formed by molding the resin by an injection method using pressure and then solidifying the resin. When the plastic package is formed by comprehensive molding, the flowing direction of the resin is parallel with the optical axis direction of the optical fiber to be installed in the optical module. As a result, for comprehensive molding, the molding pressure applied to the optical fiber is reduced. By using the resin case that is formed, the resulting package exhibits high rigidity and low thermal expansion properties in connection with the flowing direction of the resin, thus reducing the external stress and thermal stress applied to the optical fiber.
摘要:
An optical fiber is held in a ferrule, and then the ferrule is located in a positioning groove formed in a substrate, thereby aligning the optical fiber with an optical device bonded to a surface of the substrate. Then, a lid is placed on the substrate in such a manner that the ferrule is located in a positioning groove formed in the lid and that the optical device is received in a cavity formed in the lid. The ferrule is thus held between the two grooves, and in this condition a resin is filled in the two grooves, thereby retaining the ferrule. Then, the lid is sealingly secured to the substrate. After these parts are thus assembled together, this assembly is put in dies, and then a package is molded.
摘要:
In a module for optical communication comprising an optical fiber including an axial-end surface, and an optical element including an optical surface facing to the axial-end surface in such a manner that a light is transmitted between the optical surface and the axial-end surface, a synthetic resin is arranged between the optical surface and the axial-end surface so that the light is transmitted through the synthetic resin between the optical surface and the axial-end surface.
摘要:
A module for optical communication includes an optical fiber having an axial-end surface and an optical element having an optical surface facing the axial-end surface in such a manner that light is transmitted between the optical surface and the axial-end surface. The optical surface defines a first plane that is not perpendicular to the longitudinal axis of the optical fiber. A synthetic resin is provided between the optical surface of the optical element and the axial-end surface of the optical fiber so that light is transmitted through the synthetic resin.
摘要:
A conventional problem is to provide an optical module capable of being reflow mounted together with electronic components collectively, and, at the same time, securing a mechanical strength that can bear a large stress at the time of an attachment/detachment of the optical fiber. A solution to the above-mentioned problem can be attained by using an optical connector removable type optical module for reflow mounting having a fixing structure for fixing itself to a mount board, including a receptacle part installed to an optical module 19 to which an optical connector 1 is detachably connected; electric terminals 4 for reflow mounting that are arranged corresponding to lands 8 on a mount board 6; and stud parts 5 that are able to fit in fixing holes 7 on the mount board 6.