Abstract:
The present invention relates to a method for recycling LiFePO4, which is an olivine-based cathode material for a lithium secondary battery. The present invention is characterized in that a cathode material including LiFePO4 is synthesized using, as precursors, amorphous FePO4.XH2O and crystalline FePO4.2H2O (metastrengite) obtained by chemically treating LiFePO4 as an olivine-based cathode material for a lithium secondary battery, which is produced from a waste battery. Since a cathode fabricated from the LiFePO4 cathode material synthesized according to the present invention does not deteriorate the capacity, output characteristics, cycle efficiency and performance of the secondary battery and the cathode material of the lithium secondary battery may be recycled, the secondary battery is economically efficient.
Abstract:
Disclosed is a lithium manganese borate-based cathode active material. The cathode active material can be used to fabricate a lithium ion secondary battery that has advantages, such as high output capacity and cycle capacity, in comparison with lithium ion secondary batteries using conventional cathode active materials. Also disclosed are a lithium ion secondary battery including the cathode active material and a method for preparing the cathode active material.
Abstract:
A separation method of zirconium and hafnium is described which includes an extraction process of agitating an undiluted aqueous solution containing zirconium, hafnium, and sulfuric acid with a first stirring solution containing an acidic extractant to produce a first extract solution in which the hafnium is extracted by the acidic extractant; and a recovery process of agitating the first extract solution with a second stirring solution containing a citric acid solution to produce a citric acid solution after extraction in which zirconium is reverse-extracted from the first extract solution to the citric acid solution so as to recover zirconium contained in the first extract solution. The method may reduce the amount of extractant while greatly enhancing the separation effect of zirconium and hafnium, and increase zirconium recovery rate by more than 97% through an additional zirconium recovery process while reducing a hafnium content in zirconium by less than 50 ppm.
Abstract:
A method for separating tellurium includes separating and recovering tellurium (Te) from a dissolved solution containing the tellurium using a solvent extraction by an extractant, which contains one selected from a group consisting of tributyl phosphate (TBP), tris(2-ethylhexyl) phosphate (TEHP) and a combination thereof. The method may separate and recover the tellurium as a high-priced metallic element from a material, such as a Bi2Te3-based waste thermoelectric material, which contains not only the tellurium but also other metallic elements, simply and economically using a solvent extraction, whereby the tellurium with high yield and high purity can be separated, recovered and recycled.
Abstract:
A recovery method of nickel according to the present invention comprises pretreatment step to prepare a solution for electrolysis by adding hexanesulfonate salt to a treatment solution including nickel, and nickel recovery step to recover nickel in a metal form by electrolysis of the above solution for electrolysis. The present invention can produce nickel in high purity with simple process with low cost, and can recover and reproduce nickel in a metal form with at least 99.5% of high purity and at least 90% of recovery rate.
Abstract:
Disclosed are a metallic nano-structure material in which an energy storage capacity based on electrochemical reaction with lithium is improved by 10 times or more compared to a conventional graphite material and power characteristics are excellent, an electrode composed of the metallic nano-structure material, and a lithium ion asymmetric secondary battery including the electrode as an anode. When using the electrode for the lithium ion asymmetric secondary battery, energy larger than with the graphite material can be stored with very thin thickness due to the high-capacity feature of the metallic material and the high-power feature can be achieved by the nano structure, such that energy density can be innovatively improved in the same weight condition when compared to a conventional lithium ion capacitor, and the lithium ion asymmetric secondary battery including the electrode can be used for renewable energy storage, ubiquitous power supply, heavy machinery, vehicle power source, etc.
Abstract:
The present invention relates to a method of separating tellurium (Te) and selenium (Se) by using a neutral extractant (for example, either one of TBP and TEHP, or in combination thereof) from a dissolved solution of tellurium, such as a waste thermoelectric material. When tellurium and selenium are separated by using the method of this invention from a dissolved solution in which a Bi2Te3-based waste thermoelectric material is dissolved, a recovery rate of 97% or more and a separation factor of 400 or more for tellurium may be achieved, and therefore, tellurium and selenium may be separated in a very effective and economic manner as compared to conventional methods. Further, the present invention is characterized in that environmental pollution issues may be significantly reduced as compared with conventional methods carried out in a strong acidic solution since the present separation and extraction is conducted under a relative weak acid atmosphere in a pH range of 1.0 to 1.5.
Abstract translation:本发明涉及通过使用中和提取剂(例如,TBP和TEHP中的任一种或其组合)从碲的溶解溶液(例如废物)分离碲(Te)和硒(Se)的方法 热电材料。 当使用本发明的方法从溶解有Bi 2 Te 3的废热电材料的溶解溶液中分离碲和硒时,可以实现97%以上的回收率和碲的分离系数为400以上。 因此,与常规方法相比,碲和硒可以以非常有效和经济的方式分离。 此外,本发明的特征在于,与在强酸性溶液中进行的常规方法相比,可以显着降低环境污染问题,因为在1.0至1.5的pH范围内的相对弱酸性气氛下进行本分离和萃取 。
Abstract:
The present disclosure relates to a magnesium hybrid battery and a method for fabricating same. The magnesium hybrid battery according to the present disclosure, which includes magnesium or magnesium alloy metal as an anode, a cathode including a cathode active material wherein not only magnesium ion but also one or more ion selected from lithium ion and sodium ion can be intercalated and deintercalated and an electrolyte including magnesium ion and further including one or more ion selected from lithium ion and sodium, can overcome the limitation of the existing magnesium secondary battery and provide improved battery capacity, output characteristics, cycle life, safety, etc.