Abstract:
A mobile processing system is disclosed for the removal of radioactive contaminants from nuclear process waste water. The system is fully scalable, modular, and portable allowing the system to be fully customizable according the site-specific remediation requirements. It is designed to be both transported and operated from standard sized intermodal containers or custom designed enclosures for increased mobility between sites and on-site, further increasing the speed and ease with which the system may be deployed. Additionally, the system is completely modular wherein the various different modules perform different forms or stages of waste water remediation and may be connected in parallel and/or in series. Depending on the needs of the particular site, one or more different processes may be used. In some embodiments, one or more of the same modules may be used in the same operation.
Abstract:
A method for manipulating ion concentration to maximize ion exchange media performance is disclosed herein. First a source liquid is directed through an ion concentrator such as a nanofilter, reverse osmosis membrane, or an evaporator/crystallizer. The ion concentrator separates the source liquid into a concentrate stream and a permeate stream wherein the permeate stream comprises a smaller concentration of ions than the concentrate stream. The concentrate stream and/or the permeate stream (input stream) may then be directed through an ion exchange vessel. The ion exchange vessel receives the input stream, enables ion exchange between the ion exchange media in the vessel and the input stream resulting in a liquid output having a smaller concentration of ions than the input stream.
Abstract:
A mobile processing system is disclosed for the removal of radioactive contaminants from nuclear process waste water. The system is fully scalable, modular, and portable allowing the system to be fully customizable according the site-specific remediation requirements. It is designed to be both transported and operated from standard sized intermodal containers or custom designed enclosures for increased mobility between sites and on-site, further increasing the speed and ease with which the system may be deployed. Additionally, the system is completely modular wherein the various different modules perform different forms or stages of waste water remediation and may be connected in parallel and/or in series. Depending on the needs of the particular site, one or more different processes may be used. In some embodiments, one or more of the same modules may be used in the same operation.
Abstract:
A mobile processing system is disclosed for the removal of radioactive contaminants from nuclear process waste water. The system is fully scalable, modular, and portable allowing the system to be fully customizable according the site-specific remediation requirements. It is designed to be both transported and operated from standard sized intermodal containers or custom designed enclosures for increased mobility between sites and on-site, further increasing the speed and ease with which the system may be deployed. Additionally, the system is completely modular wherein the various different modules perform different forms or stages of waste water remediation and may be connected in parallel and/or in series. Depending on the needs of the particular site, one or more different processes may be used. In some embodiments, one or more of the same modules may be used in the same operation.