Abstract:
Disclosed herein are systems, methods, processes, and apparatuses for treating radioactive waste, through systems designed to bind and dry radioactive media. In some of its various embodiments, the system includes at least one helical screw designed to receive and mix liquid wastes with ion exchange media, as well as convey the resulting slurry through one or more of a binding, dewatering, and drying/off-gassing region.
Abstract:
Systems and methods are disclosed for controlling performance of a mixed ion exchange media comprising two or more media. The weighted average of a quantity of the first media having a first rate of exchange to a quantity of a second media having a second rate of exchange is determined based on predetermined requirements for the resulting mixed media. After determining the weighted average, the first and second media are mixed resulting in a mixed media having a third rate of exchange. The mixed media is introduced to an ion exchange column. Contaminated liquid is then introduced to the column creating a mass transfer zone within the column. The mixed media is generally considered optimized when it meets three conditions simultaneously: 100% safety limitation, 100% media capacity used, and effluent criteria are met.
Abstract:
A method for manipulating ion concentration to maximize ion exchange media performance is disclosed herein. First a source liquid is directed through an ion concentrator such as a nanofilter, reverse osmosis membrane, or an evaporator/crystallizer. The ion concentrator separates the source liquid into a concentrate stream and a permeate stream wherein the permeate stream comprises a smaller concentration of ions than the concentrate stream. The concentrate stream and/or the permeate stream (input stream) may then be directed through an ion exchange vessel. The ion exchange vessel receives the input stream, enables ion exchange between the ion exchange media in the vessel and the input stream resulting in a liquid output having a smaller concentration of ions than the input stream.
Abstract:
A mobile processing system is disclosed for the removal of radioactive contaminants from nuclear process waste water. The system is fully scalable, modular, and portable allowing the system to be fully customizable according the site-specific remediation requirements. It is designed to be both transported and operated from standard sized intermodal containers or custom designed enclosures for increased mobility between sites and on-site, further increasing the speed and ease with which the system may be deployed. Additionally, the system is completely modular wherein the various different modules perform different forms or stages of waste water remediation and may be connected in parallel and/or in series. Depending on the needs of the particular site, one or more different processes may be used. In some embodiments, one or more of the same modules may be used in the same operation.
Abstract:
Disclosed herein are systems, methods, processes, and apparatuses for treating radioactive waste, through systems designed to bind and dry radioactive media. In some of its various embodiments, the system includes at least one helical screw designed to receive and mix liquid wastes with ion exchange media, as well as convey the resulting slurry through one or more of a binding, dewatering, and drying/off-gassing region.
Abstract:
Systems and methods are disclosed for utilizing lead-tag configuration with ion exchange systems to increase process efficiency, increase media utilization, and reduce system downtime.
Abstract:
Systems and methods are disclosed for utilizing lead-lag configurations with ion exchange systems to increase process efficiency, increase media utilization, and reduce system downtime.