Abstract:
A gas flow metrology system for a substrate processing system includes N primary valves selectively flowing gas from N gas sources, respectively, where N is an integer. N mass flow controllers are connected to the N primary valves, respectively, to flow N gases from the N gas sources, respectively. N secondary valves selectively flow gas from the N mass flow controllers, respectively. A gas flow path connects the N secondary valves to a flow metrology system located remote from the N secondary valves, wherein the gas flow path includes a plurality of gas lines. A controller is configured to perform a hybrid flow metrology by selectively using a first flow metrology and a second flow metrology that is different from the first flow metrology to determine an actual flow rate for a selected gas at a desired flow rate from one of the N mass flow controllers.
Abstract:
A method for calibrating a gas flow metrology system for a substrate processing system includes a) measuring temperature using a first temperature sensor and a reference temperature sensor over a predetermined temperature range and determining a first transfer function; b) measuring pressure using a first pressure sensor and a reference pressure sensor over a predetermined pressure range using a first calibration gas and determining a second transfer function; c) performing a first plurality of flow rate measurements in a predetermined flow rate range with a first metrology system and a reference metrology system, wherein the first metrology system and the reference metrology system use a first orifice size and the first calibration gas; and d) scaling temperature and pressure using the first transfer function and the second transfer function, respectively, and determining a corresponding transfer function for the first calibration gas based on the first plurality of flow rate measurements.
Abstract:
A method for calibrating a gas flow metrology system for a substrate processing system includes a) measuring temperature using a first temperature sensor and a reference temperature sensor over a predetermined temperature range and determining a first transfer function; b) measuring pressure using a first pressure sensor and a reference pressure sensor over a predetermined pressure range using a first calibration gas and determining a second transfer function; c) performing a first plurality of flow rate measurements in a predetermined flow rate range with a first metrology system and a reference metrology system, wherein the first metrology system and the reference metrology system use a first orifice size and the first calibration gas; and d) scaling temperature and pressure using the first transfer function and the second transfer function, respectively, and determining a corresponding transfer function for the first calibration gas based on the first plurality of flow rate measurements.
Abstract:
A system and method for processing a substrate in a processing chamber and providing an azimuthally evenly distributed draw on the processing byproducts using a gas pump down source coupled to the processing chamber above the plane of a substrate support within the processing chamber. The process chamber can include an annular plenum disposed between the support surface plane and the chamber top, the plenum including at least one vacuum inlet port coupled to the gas pump down source and a continuous inlet gap proximate to a perimeter of the substrate support, the continuous inlet gap having an inlet gas flow resistance of between about twice and about twenty times an outlet gas flow resistance the at least one vacuum inlet port.