Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.
Abstract:
A thin film transistor substrate including a second electrode connected to a first electrode within a shared contact hole; and a fourth electrode connected to a third electrode within the shared contact hole, wherein the shared contact hole penetrates through a plurality of stacked insulating layers, and wherein an insulating layer below at least one of a connection portion in which the first electrode and the second electrode are connected and a connection portion in which the third electrode and the fourth electrode are connected has an undercut structure within the shared contact hole.
Abstract:
A liquid crystal display preventing a light leakage is disclosed. The liquid crystal display includes gate lines and data lines disposed to cross over each other, a common line crossing over the data lines and disposed in parallel with the gate lines, a dummy data line crossing over the gate lines and disposed in parallel with the data lines, a dummy pixel electrode disposed in a dummy area formed by an outermost data line of the data lines, the dummy data line and first and second gate lines adjacent to each other among the gate lines; a pixel electrode disposed in a pixel area between first and second data lines adjacent to each other among the data lines and the first and second gate lines; and a common electrode disposed to overlap the pixel electrode and the dummy pixel electrode. The dummy pixel electrode is connected to the common line.
Abstract:
A display device is provided. The display device can include a first pixel portion comprising a first thin-film transistor provided at the intersection between a first gate line and a first data line, and a first pixel electrode connected to the first thin-film transistor, and a second pixel portion comprising a second thin-film transistor provided at the intersection between a second gate line and the first data line, and a second pixel electrode connected to the second thin-film transistor, wherein the first pixel portion and the second pixel portion are arranged parallel to the first data line, and directions extended the first pixel electrode and the second pixel electrode are extended in such a direction as to face each other.
Abstract:
An array substrate for a liquid crystal display includes a substrate and first and second subpixels which are positioned on the substrate and are defined by a crossing structure of one gate line, a first data line, a second data line, a first common line, and a second common line. The first subpixel includes a first semiconductor layer, a first source electrode, a first drain electrode, and a first pixel electrode connected to the first drain electrode. The second subpixel includes a second semiconductor layer, a second source electrode, a second drain electrode, and a second pixel electrode connected to the second drain electrode. The first and second subpixels share the one gate line with each other, and the first drain electrode and the second drain electrode are exposed through one contact hole.