Abstract:
The present embodiments relate to a driving circuit and a touch display apparatus for sensing a user's touch position and touch force with respect to a display panel, and further relate to a driving method thereof. The touch display apparatus may include a plurality of first electrodes that are configured to be embedded in a display panel, and a second electrode that is configured to be positioned outside the display panel. The touch display apparatus may read a force sensing signal from the second electrode through a signal detecting unit that is electrically connected to the second electrode. Therefore, it is possible to sense a touch force without separating a force sensing signal from a signal received from the first electrode, and to sense a user's touch force through the driving of the second electrode regardless of the driving mode of the first electrode.
Abstract:
A driver circuit, a touch display device, and a method of driving the touch display device. Touching force is sensed by driving a plurality of first electrodes disposed in a display panel and a second electrode located outside of the display panel. The first electrodes corresponding to force sensors for sensing the touching force and the second electrode are driven by alternating in-phase driving and antiphase driving. Touching force components are selectively and accurately extracted from sensing data, and the touching force can be accurately sensed.
Abstract:
The present invention relates to touch screen panel integrated display panel and display device. The touch screen panel integrated display panel comprises: a common electrode to which a common voltage is applied in a display mode and a touch driving signal is applied in a touch mode; a gate line that transfers a scan signal to a pixel row; and a gate driving integrated circuit that is connected to the gate line and outputs the scan signal to the gate line, wherein the gate driving integrated circuit includes a pull-up transistor and a pull-down transistor for outputting the scan signal to the gate line in the display mode, and additionally includes a touch mode transistor for outputting the touch driving signal applied to the common electrode or a signal corresponding to the touch driving signal to the gate line in the touch mode.
Abstract:
A display device with an integrated touch screen including a display panel including electrodes divided into a plurality of block type groups and a plurality of data lines; a display driver IC configured to apply a common voltage to the electrodes when a driving mode of the panel is a display driving mode, sequentially apply a touch scan signal to each block type group when the driving mode of the panel is a touch driving mode, and apply a data signal to the data lines associated with a corresponding block type group when the touch scan signal is applied to the corresponding block type group; and a touch IC configured to generate the touch scan signal and apply the touch scan signal to the display driver IC.
Abstract:
A touch display device and a touch driving circuit are discussed. An operation period of the touch display device can include a first touch sensing mode period in which a first touch driving signal having a first amplitude is applied to the touch sensor, and a second touch sensing mode period in which a second touch driving signal having a second amplitude different from the first amplitude is applied to the touch sensor. The first touch driving signal can be sequentially applied to each of a plurality of first touch electrodes during the first touch sensing mode period, and, during the second touch sensing mode period.
Abstract:
A touch display device and a driving method for the touch display device are disclosed. A touch circuit supplies an uplink signal to a touchscreen panel. A first uplink signal which is a first waveform signal is supplied to a first touch electrode. A second uplink signal which is a second waveform signal is supplied to a second touch electrode. The effect of the uplink signal on display driving is prevented.
Abstract:
A display device includes a plurality of gate lines; a plurality of data lines; a plurality of pixel electrodes electrically connected with the plurality of data lines; a plurality of common electrodes corresponding to two or more pixel electrodes among the plurality of pixel electrodes; a data driving circuit outputting data voltages to the plurality of data lines; and a driving circuit outputting a first driving signal with a first voltage level to at least one common electrode among the plurality of common electrodes during a first driving period and a second driving signal with a second voltage level and a third voltage level to the at least one common electrode during a second driving period, the second driving signal being a pulse signal, wherein the second voltage level and the third voltage level differ from the first voltage level.
Abstract:
A touch display device, a driving circuit, and a driving method are provided. An image defect which occurs when display driving and touch driving are simultaneously executed can be reduced by performing control such that a voltage level of a touch electrode driving signal (TDS) varies in a section other than a high-level period (Pon) of an ON-clock signal (ON_CLK) and/or a high-level period (Poff) of an OFF-clock signal (OFF_CLK).
Abstract:
A driving circuit, a touch display device, and a method of driving the touch display device. A plurality of first electrodes are disposed within a display panel. A second electrode is disposed outside of the display panel. A driving circuit detects at least one of a touch position and a touching force of a touch by sequentially applying a first electrode driving signal to at least one first electrode among the plurality of first electrodes and applying a second electrode driving signal to the second electrode in a touch driving period. When a user touches a screen, not only can a touch position be sensed, but also a touching force with which the user presses the screen can also be efficiently sensed. This provides a range of functions that existing touch position-detecting technologies have failed to provide.
Abstract:
A touch display device, a driving circuit, and a driving method are provided. An image defect which occurs when display driving and touch driving are simultaneously executed can be reduced by performing control such that a voltage level of a touch electrode driving signal (TDS) varies in a section other than a high-level period (Pon) of an ON-clock signal (ON_CLK) and/or a high-level period (Poff) of an OFF-clock signal (OFF_CLK).