Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A method and system for achieving a gas-liquid mass transfer includes delivering into a compartment of a container a liquid, the liquid having an exposed top surface disposed within the compartment. A stream of a gas is passed over the top surface of the liquid so that the stream of gas produces turbulence on the top surface that is sufficient to achieve the gas-liquid mass transfer. In one embodiment the liquid is a culture that includes cells or microorganisms and the mass transfer functions to oxygenate the culture sufficient to sustain the cells or microorganisms.
Abstract:
A system for oxygenating a biological culture includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween; a tubular member projecting into the compartment of the container and terminating at a terminal end; a gas supply coupled with the tubular member and being configured to blow gas through the tubular member; and a mixing element disposed within compartment of the container at a location between the terminal end of the tubular member and the bottom wall of the container, the mixing element being configured to mix the liquid.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A tube has a first end and an opposing second end, the first end of the tube being disposed within the compartment of the container. A nozzle is disposed within the compartment of the container and has at least one outlet, the nozzle being coupled with the tube so that a gas can be passed through the tube and out the at least one outlet of the nozzle. The nozzle is sufficiently buoyant so that when a fluid is disposed within the compartment of the container, the nozzle floats on the fluid.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.
Abstract:
A system for performing a gas-liquid mass transfer includes a container bounding a compartment and having a top wall, a bottom wall, and an encircling sidewall extending therebetween. A first opening is formed on the container so as to communicate with the compartment. A liquid is disposed within the compartment and having a top surface disposed below the first opening. A gas is blown through the first opening so that the gas passes over at least a portion of the top surface of the liquid, the gas producing turbulence on the top surface of the liquid that is sufficient to produce a mass transfer between the gas and the liquid. A mixing element is disposed within the compartment.