Abstract:
Embodiments include a self-aware substrate and methods for utilizing a self-aware substrate. In one embodiment, a method of processing a self-aware substrate may include initiating a processing operation on the self-aware substrate. The processing operation may be any processing operation used in the fabrication of functioning devices on a production substrate. The method may further include receiving output signals from one or more sensors on the self-aware substrate. In some embodiments, the one or more sensors are formed on non-production regions of the substrate. The method may further include comparing the output signals to an endpoint criteria that is associated with one or more processing conditions. For example, the endpoint criteria may be associated with processing conditions such as film thickness. The method may further include ending the processing operation when the endpoint criteria is satisfied.
Abstract:
Embodiments include devices and methods for detecting particles in a wafer processing tool. In an embodiment, a particle monitoring device having a wafer form factor includes several micro sensors capable of operating in all pressure regimes, e.g., under vacuum conditions. The particle monitoring device may include a clock to output a time value when a parameter of a micro sensor changes in response to receiving a particle within a chamber of the wafer processing tool. A location of the micro sensor or the time value may be used to determine a source of the particle. Other embodiments are also described and claimed.
Abstract:
Embodiments include devices and methods for detecting material deposition and material removal performed by a wafer processing tool. In an embodiment, one or more micro sensors mounted on a process chamber of the wafer processing tool are capable of operating under vacuum conditions and/or may measure material deposition and removal rates in real-time during a plasma-less wafer fabrication process. Other embodiments are also described and claimed.
Abstract:
Embodiments involve patterned mask formation. In one embodiment, a method involves depositing a CVD film over a semiconductor wafer; exposing the CVD film to e-beam or UV radiation, forming a pattern in the CVD film; and etching the pattern in the CVD film, forming features in areas not exposed to the e-beam or UV radiation. In one embodiment, a method involves depositing a CVD film over a semiconductor wafer; depositing a thin photo-sensitive CVD hardmask film over the CVD film; exposing the thin photo-sensitive CVD hardmask film to e-beam or UV radiation, forming a pattern in the thin photo-sensitive CVD hardmask film; etching the pattern in the thin photo-sensitive CVD hardmask film; etching the pattern into the CVD film through the patterned thin photo-sensitive CVD hardmask film; and removing the patterned thin photo-sensitive CVD hardmask film.