Abstract:
A bed, comprising: a user support structure including a body support member having a head region and a foot region, and a foot support member positioned proximate the foot region of the body support member and projecting laterally from the body support member; a frame for supporting the user support structure on a support surface; a coupling mechanism coupling the user support structure to the frame and providing for relative movement there-between; and an actuator that is configured to move the user support structure relative to the frame between a user rest position and a user reception/departure position, such that when in the user rest position the body support member is oriented to support the body of a user lying at least indirectly thereon, and when in the user reception/departure position, the body support member is oriented laterally to the foot support member such that the foot support member is oriented to support the user standing thereon.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
An active hinge for a deployable hood assembly of the type used in a pedestrian protection system for motor vehicles. The active hinge employs a primary latch to mechanically hold the hinge in a non-deployed condition and a secondary latch to mechanically hold the hinge in a deployed condition.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
An active hinge for a deployable hood assembly of the type used in a pedestrian protection system for motor vehicles. The active hinge employs a primary latch to mechanically hold the hinge in a non-deployed condition and a secondary latch to mechanically hold the hinge in a deployed condition.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.
Abstract:
A latch assembly for driving a closure panel from a closed panel position to an open panel position. The latch assembly comprises: a latch mechanism having a first latch element for retaining a mating latch component in a latched position and for moving the mating latch component from the latched position to an unlatched position when released, the movement of the first latch element biased towards the unlatched position by a latch biasing element; and an actuation system having: a mechanical energy storage system having a device for storing mechanical potential energy for assisting the latch biasing element in moving the mating latch component from the latched position to the unlatched position; a mechanical advantage system having a plurality of advantage elements for engaging the device, such that movement of the plurality of advantage elements is associated with a trigger force and cooperation of the plurality of advantage elements provides for amplification of the trigger force as an initiating force to release the stored mechanical potential energy; and a trigger system configured to provide the trigger force to release the stored mechanical potential energy.