Abstract:
An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The energy storage device includes an energy storage device housing, with a battery housing portion, a capacitor housing portion, and a housing lid. The energy storage device includes a battery disposed within the battery housing portion. The battery includes a first battery terminal extending through a battery lid enclosing the battery housing portion. The energy storage device includes a capacitor disposed within the capacitor housing portion and connected in parallel with the battery. The capacitor includes a first capacitor terminal. The energy storage device includes a first bus bar electrically connecting the first battery terminal and the first capacitor terminal. The energy storage device includes a first external device terminal extending through the energy storage device housing and configured to electrically connect to the first battery terminal and the bus bar.
Abstract:
An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
Abstract:
An energy storage device can have a first graphite film, a second graphite film and an electrode divider ring between the first graphite film and the second graphite film, forming a sealed enclosure. The energy storage device may be compatible with an aqueous electrolyte or a non-aqueous electrolyte. A method of forming an energy storage device can include providing an electrode divider ring, a first graphite film and a second graphite film. The method can include pressing a first edge of the electrode divider ring into a surface of the first graphite film, and pressing a second opposing edge of the electrode divider ring into a surface of the second graphite film to form a sealed enclosure. The sealed enclosure may have as opposing surfaces the surface of the first graphite film and the surface of the second graphite film.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.
Abstract:
This disclosure provides systems, methods and apparatus for a battery system. The battery system includes an enclosure, a battery disposed within the enclosure; and at least one ultracapacitor. The ultracapacitor is disposed within the enclosure and coupled to the battery to provide electrical energy via battery terminals. The enclosure conforms to a standard form factor for a battery that comprises one or more conventional storage cells without an ultracapacitor.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. In one aspect, the device includes a housing with an integrated battery housing portion, a capacitor housing portion, and a housing lid. A plurality of battery electrodes and electrolyte are contained directly within the integrated battery housing portion and are configured to form an integrated battery within the integrated battery housing portion. The capacitor is connected in parallel with the battery and contained within the capacitor housing portion. A first device terminal and a second device terminal extending through the housing.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.