Abstract:
Disclosed are systems and methods for improved cell-balancing circuits, back-up failure detection circuits and alarm extension for cells and modules of an energy storage system. One aspect of the invention comprises an energy storage device cell balancing apparatus. The apparatus comprises a first and a second dissipative component connected in series. The first dissipative component and the second dissipative component are coupled to an energy storage cell. The second dissipative component monitors a voltage of the energy storage cell and, if the voltage is at or above a reference voltage, the second dissipative component conducts a discharging current through the first and second dissipative components. The first dissipative component maintains a voltage drop across the first dissipative component that is proportional to the voltage of the energy storage cell. The second dissipative component maintains a constant voltage drop across the second dissipative component when conducting the discharging current.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.
Abstract:
Disclosed are systems and methods for improved cell-balancing circuits, back-up failure detection circuits and alarm extension for cells and modules of an energy storage system. One aspect of the invention comprises an energy storage device cell balancing apparatus. The apparatus comprises a first and a second dissipative component connected in series. The first dissipative component and the second dissipative component are coupled to an energy storage cell. The second dissipative component monitors a voltage of the energy storage cell and, if the voltage is at or above a reference voltage, the second dissipative component conducts a discharging current through the first and second dissipative components. The first dissipative component maintains a voltage drop across the first dissipative component that is proportional to the voltage of the energy storage cell. The second dissipative component maintains a constant voltage drop across the second dissipative component when conducting the discharging current.
Abstract:
In one aspect, an embodiment of this invention comprises an energy storage device balancing apparatus. The energy storage device balancing apparatus comprises a balancing circuit and an alarm circuit. Both the balancing circuit and the alarm circuit are coupled to the energy storage device. The balancing circuit is configured to monitor a voltage of the energy storage cell and dissipate energy from the energy storage cell if the voltage is at or above a first reference voltage. The alarm circuit is configured to generate an alarm when the voltage of the energy storage cell is at or above a second reference voltage and dissipate energy from the energy storage cell when the voltage is at or above the second reference voltage.
Abstract:
In one aspect, an embodiment of this invention comprises an energy storage device balancing apparatus. The energy storage device balancing apparatus comprises a balancing circuit and an alarm circuit. Both the balancing circuit and the alarm circuit are coupled to the energy storage device. The balancing circuit is configured to monitor a voltage of the energy storage cell and dissipate energy from the energy storage cell if the voltage is at or above a first reference voltage. The alarm circuit is configured to generate an alarm when the voltage of the energy storage cell is at or above a second reference voltage and dissipate energy from the energy storage cell when the voltage is at or above the second reference voltage.
Abstract:
In one aspect, an embodiment of this invention comprises an energy storage device balancing apparatus. The energy storage device balancing apparatus comprises a balancing circuit and an alarm circuit. Both the balancing circuit and the alarm circuit are coupled to the energy storage device. The balancing circuit is configured to monitor a voltage of the energy storage cell and dissipate energy from the energy storage cell if the voltage is at or above a first reference voltage. The alarm circuit is configured to generate an alarm when the voltage of the energy storage cell is at or above a second reference voltage and dissipate energy from the energy storage cell when the voltage is at or above the second reference voltage.
Abstract:
This disclosure provides systems, methods and apparatus for a combined battery/capacitor energy storage device. The device includes a first device terminal, a second device terminal, a battery connected between the first terminal and the second terminal, and a capacitor connected in parallel with the battery. In one aspect, a rectifier is connected between the first terminal and the capacitor, the rectifier configured to allow substantially unidirectional current flow from the first terminal to the capacitor. In another aspect, a switch is between the capacitor and the first terminal. In another aspect, a current limiter extends between the first terminal and the capacitor.