Abstract:
An apparatus includes a bank of optical detectors, an input optical filter and a selector. The optical detectors are configured to output respective detection indications in response to detecting a presence of an optical signal. The input optical filter is configured to receive an input optical signal having an input wavelength, and to route the input optical signal to one of the optical detectors in the bank depending on the input wavelength. The selector is configured to select an output wavelength based on the detection indications of the optical detectors, and to cause generation and transmission of an output optical signal at the selected output wavelength.
Abstract:
An apparatus and method of assembly are described that provide an improved printed circuit board (PCB) assembly for an electro-optical interface, where more accurate positioning and alignment of electro-optical components can be achieved in an active part of the PCB assembly that is used for the electro-optical interface to meet tighter tolerances in an easier and more cost efficient manner. In particular, a photonic integrated circuit (PIC) is received in a cavity defined in a PCB that includes conductive elements for transmitting electrical signals. An optoelectronic transducer is connected to the PIC to convert between the optical signals and the corresponding electrical signals, and an optical coupler is secured to the optoelectronic transducer and supported by the PIC and/or PCB, where the optical coupler is configured to transmit the optical signals between the optoelectronic transducer and an optical fiber.
Abstract:
An opto-mechanical coupler and corresponding method are provided. The coupler may include a first end and a second end configured to receive optical fibers and a top surface and bottomed surface defining a through hole extending between the top and bottom surfaces. The coupler may include a reflective surface that redirects the optical signals between a first direction and a second direction substantially perpendicular to the first direction. The coupler may position one or more optical fibers along a second direction such that an optical signal from the plurality of optoelectronic transceivers is directed into one or more optical fibers or an optical signal from the one or more optical fibers is directed into a plurality of the optoelectronic transceivers, with the coupler accommodating different diameters of optical fiber including POF, SMF, and/or MMF fiber.
Abstract:
A transducer reliability testing and VCSEL failure prediction method are provided. The method includes applying a testing temperature and a constant current to a VCSEL for a testing time. The method monitors a forward voltage of the VCSEL and determines if a first change in forward voltage is above a first predetermined threshold over the testing time and if a second change in forward voltage is above a second predetermined threshold over a portion of the testing time. The method determines failure of the VCSEL if either of these predetermined thresholds are exceeded. The method determines passage of the VCSEL if the first change in the forward voltage and the second change in the forward voltage are both below the first predetermined threshold and the second predetermined threshold, respectively.
Abstract:
A reconfigurable and redundant electro-optical connector and corresponding method are provided. The connector may include a first plurality of transducers in communication with a first port and a second plurality of transducers in communication with a second port, the first port and the first transducers defining a first channel and the second port and the second transducers defining a second channel. The connector may include a selective combiner to combine the first optical signals and the second optical signals, and a controller in communication with each of the transducers. The controller may transmit at least a first portion of a first datalink on at least the first channel in a first configuration. The controller may redistribute the first portion of the first datalink onto at least the second channel in a second configuration.
Abstract:
An apparatus includes a bank of optical detectors, an input optical filter and a selector. The optical detectors are configured to output respective detection indications in response to detecting a presence of an optical signal. The input optical filter is configured to receive an input optical signal having an input wavelength, and to route the input optical signal to one of the optical detectors in the bank depending on the input wavelength. The selector is configured to select an output wavelength based on the detection indications of the optical detectors, and to cause generation and transmission of an output optical signal at the selected output wavelength.
Abstract:
An opto-mechanical coupler and corresponding method are provided. The coupler may include a first end and a second end configured to receive optical fibers and a top surface and bottomed surface defining a through hole extending between the top and bottom surfaces. The coupler may include a reflective surface that redirects the optical signals between a first direction and a second direction substantially perpendicular to the first direction. The coupler may position one or more optical fibers along a second direction such that an optical signal from the plurality of optoelectronic transceivers is directed into one or more optical fibers or an optical signal from the one or more optical fibers is directed into a plurality of the optoelectronic transceivers, with the coupler accommodating different diameters of optical fiber including POF, SMF, and/or MMF fiber.
Abstract:
A transducer reliability testing and VCSEL failure prediction method are provided. The method includes applying a testing temperature and a constant current to a VCSEL for a testing time. The method monitors a forward voltage of the VCSEL and determines if a first change in forward voltage is above a first predetermined threshold over the testing time and if a second change in forward voltage is above a second predetermined threshold over a portion of the testing time. The method determines failure of the VCSEL if either of these predetermined thresholds are exceeded. The method determines passage of the VCSEL if the first change in the forward voltage and the second change in the forward voltage are both below the first predetermined threshold and the second predetermined threshold, respectively.
Abstract:
An apparatus and method of assembly are described that provide an improved printed circuit board (PCB) assembly for an electro-optical interface, where more accurate positioning and alignment of electro-optical components can be achieved in an active part of the PCB assembly that is used for the electro-optical interface to meet tighter tolerances in an easier and more cost efficient manner. In particular, a photonic integrated circuit (PIC) is received in a cavity defined in a PCB that includes conductive elements for transmitting electrical signals. An optoelectronic transducer is connected to the PIC to convert between the optical signals and the corresponding electrical signals, and an optical coupler is secured to the optoelectronic transducer and supported by the PIC and/or PCB, where the optical coupler is configured to transmit the optical signals between the optoelectronic transducer and an optical fiber.
Abstract:
An apparatus includes an array of electro-optical transducers, control circuitry, and a connector housing. The electro-optical transducers are configured to convert between electrical signals and respective optical signals conveyed over respective optical fibers. The control circuitry is configured, in response to a failure of a first electro-optical transducer in the array that is associated with a given optical fiber, to switch one or more of the electrical signals and the optical signals so as to replace the first electro-optical transducer with a second electro-optical transducer in the array in conveying an optical signal over the given optical fiber. The connector housing contains the array of the electro-optical transducers and the control circuitry.