Abstract:
A non-contact surface-shape measuring method uses a white light interferometer optical head that divides, through a beam splitter, light emitted from a white light source into reference light for a reference mirror and measurement light for a measured object surface; obtains an image having interference fringes generated from an optical path difference of light reflecting from the reference mirror and light reflecting from the measured object surface; and is displaced for scanning in a vertical direction with respect to the measured object surface in order to obtain the image having interference fringes. While the white light interferometer optical head is displaced in a scanning direction, a position of the optical head in the scanning direction is detected, and the image having interference fringes is obtained at predetermined spatial intervals in the scanning direction.
Abstract:
An image measuring apparatus is configured such that an image of a measured object placed on a stage is captured by a camera, the captured image is displayed on a captured image display screen, and determination results based on results of a measurement are displayed in an overview list separately from the captured image of the measured object. The image measuring apparatus includes a selector selecting measurement results that include determination results on the list; and an emphasis displayer providing an emphasis display on the captured image display screen for a measurement position corresponding to the selected measurement results.
Abstract:
An image measuring apparatus is configured such that an image of a measured object placed on a stage is captured by a camera, the captured image is displayed on, a captured image display screen, and determination results based on results of a measurement are displayed in an overview list separately from the captured image of the measured object. The image measuring apparatus includes an individual determination results display region displaying individual determination results for each measurement position; and an overall determination results display region displaying overall determination results for the measured object as a unit. The image measuring apparatus is configured to display the individual determination results and the overall determination results together.
Abstract:
An image measuring method performed with an image measuring device measuring a dimension of a measured object from an image of the measured object captured by an image capturer. The method executes a standard reference object measurement measuring a dimension of the standard reference object with the image measuring device; a standard reference dimension input inputting a dimension of the standard reference object specified by a device other than the image measuring device; a preset value calculation calculating a preset value from the dimension of the measured standard reference object and from a dimension of the standard reference object measured by a predetermined measurement tool; a measurement measuring a dimension of a measured object other than the standard reference object using the image measuring device; and a correction correcting the dimension of the measured object other than the standard reference object measured by the image measuring device.
Abstract:
A hardness tester includes a memory associating and storing a parts program having defined measurement conditions with respect to a sample, including a test position, and an image file acquired by capturing an image of the shape of the sample; an image acquirer acquiring image data of the sample to be measured; a pattern matcher performing a pattern matching process on the image data of the sample using the image file associated with the parts program; a determiner determining whether an image file exists which has a shape related to the image data of the sample; a retriever retrieving the parts program associated with the image file having a related shape; and a measurer measuring hardness of the sample based on the retrieved parts program.
Abstract:
A distance in a scanning direction between a first set of edges which face each other and exhibit an opposite change between light and dark is measured by an image measuring machine, and a bias correction value is calculated based on a difference between a measured value and a true value. Using the bias correction value, detection point correction values, which are correction values in various directions of edge detection points detected by a scan of a measured object using the image measuring machine, are calculated; a correction amount used in correction of the edge detection points is specified based on the detection point correction value in each direction; and the edge detection points are corrected using the correction amount.