Abstract:
Systems and methods for frequency spectrum interference coordination in communication systems with dynamically-assigned spectrum. Embodiments provided herein include a spectrum management entity proxy between a cellular network's base stations and the spectrum management entity. The spectrum management entity proxy determines and implements an interference coordination scheme between the base stations of the cellular network. To determine and implement the interference coordination scheme, the spectrum management entity proxy modifies the messages exchanged between one or more base stations and a spectrum management entity before forwarding the messages. In some embodiments, the spectrum management entity proxy generates request messages to the spectrum management entity on behalf of the base stations (and vice versa).
Abstract:
Systems and methods for frequency spectrum interference coordination in communication systems with dynamically-assigned spectrum. Embodiments provided herein include a spectrum management entity proxy between a cellular network's base stations and the spectrum management entity. The spectrum management entity proxy determines and implements an interference coordination scheme between the base stations of the cellular network. To determine and implement the interference coordination scheme, the spectrum management entity proxy modifies the messages exchanged between one or more base stations and a spectrum management entity before forwarding the messages. In some embodiments, the spectrum management entity proxy generates request messages to the spectrum management entity on behalf of the base stations (and vice versa).
Abstract:
A communication system minimizes inter-cell interference and handover holes by providing for a user equipment (UE) to monitor downlink signals from a serving, boundary eNodeB and one or more neighbor eNodeBs, determine a signal quality metric (SQM) for each monitored signal to produce an SQM associated with each eNodeB, and determine a maximum uplink transmit power level (PMAX) for each eNodeB. Based on the determined SQMs and PMAXs, the UE determines a eNodeB of the one or more neighbor eNodeBs with a best SQM and, in response to determining that the neighbor eNodeB of the one or more neighbor eNodeBs with a best SQM is a high power eNodeB, determines a difference between the SQM associated with the high power ENodeB and the SQM associated with the boundary eNodeB. The UE then sets a PMAX for the UE based on the difference determination.
Abstract:
Systems and methods for enabling inter-frequency user equipment mobility in shared spectrum communication systems. One example system includes a communication interface coupled to an electronic processor. The electronic processor is configured to, for each of a plurality of base stations, determine a location for the base station. The electronic processor is configured to select at least one handover candidate from the plurality of base stations based on the location and at least one base station characteristic. The electronic processor is configured to determine a channel allocation. The electronic processor is configured to generate, based on the channel allocation of the at least one handover candidate, a neighbor channel list. The electronic processor is configured to transmit the neighbor channel list via the communication interface.
Abstract:
Systems and methods for enabling inter-frequency user equipment mobility in shared spectrum communication systems. One example system includes a communication interface coupled to an electronic processor. The electronic processor is configured to, for each of a plurality of base stations, determine a location for the base station. The electronic processor is configured to select at least one handover candidate from the plurality of base stations based on the location and at least one base station characteristic. The electronic processor is configured to determine a channel allocation. The electronic processor is configured to generate, based on the channel allocation of the at least one handover candidate, a neighbor channel list. The electronic processor is configured to transmit the neighbor channel list via the communication interface.
Abstract:
A method and apparatus to mitigate radio frequency interference by a broadband mobile device by detecting, at the broadband mobile device, a geographically or physically proximate narrowband uplink transmission, wherein the narrowband uplink transmission is in close enough spectral proximity to at least one bearer channel of the broadband mobile device to result in interference on the narrowband reception when the broadband mobile device is transmitting and a narrowband mobile device is receiving, determining, based on the detected narrowband uplink transmission, a corresponding narrowband downlink frequency, monitoring the determined narrowband downlink frequency, detecting a narrowband downlink transmission at the monitored narrowband downlink frequency, and in response to detecting the narrowband downlink transmission at the monitored narrowband downlink frequency, modifying a broadband uplink transmission to ensure the broadband uplink transmission does not interfere with narrowband downlink reception.
Abstract:
A portable communication device operating of a first WWAN can receive an identifier from a WLAN access point indicating that one or more devices operating on a second WWAN are in the vicinity of the WLAN access point. In response, the portable communication device invokes an interference mitigation process while the identifier indicates that devices operating on the second WWAN are present.
Abstract:
A communication system minimizes inter-cell interference and handover holes by providing for a user equipment (UE) to monitor downlink signals from a serving, boundary eNodeB and one or more neighbor eNodeBs, determine a signal quality metric (SQM) for each monitored signal to produce an SQM associated with each eNodeB, and determine a maximum uplink transmit power level (PMAX) for each eNodeB. Based on the determined SQMs and PMAXs, the UE determines a eNodeB of the one or more neighbor eNodeBs with a best SQM and, in response to determining that the neighbor eNodeB of the one or more neighbor eNodeBs with a best SQM is a high power eNodeB, determines a difference between the SQM associated with the high power ENodeB and the SQM associated with the boundary eNodeB. The UE then sets a PMAX for the UE based on the difference determination.
Abstract:
Systems and methods for frequency spectrum interference coordination in communication systems with dynamically-assigned spectrum. Embodiments provided herein include a spectrum management entity proxy between a cellular network's base stations and the spectrum management entity. The spectrum management entity proxy determines and implements an interference coordination scheme between the base stations of the cellular network. To determine and implement the interference coordination scheme, the spectrum management entity proxy modifies the messages exchanged between one or more base stations and a spectrum management entity before forwarding the messages. In some embodiments, the spectrum management entity proxy generates request messages to the spectrum management entity on behalf of the base stations (and vice versa).
Abstract:
Methods and systems for dynamically allowing a guest device to a join a private citizens broadband radio systems (CBRS) network. The method includes determining one of a location of the guest device and a location of a public safety incident. The public safety incident is associated with the guest device. The method also includes determining that one of the location of the guest device and the location of the public safety incident is in a coverage area of the private CBRS network. The method further includes reconfiguring the private CBRS network to allow operation of the guest device on the private CBRS network, and operating the guest device on the private CBRS network.