摘要:
The invention relates to a device for machining an object by laser radiation, in particular by using the photodisruption method. Said device comprises an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning said sector. According to the invention, such a device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. This invention alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
摘要:
The invention relates to a device for machining an object by laser radiation, in particular by using the photodisruption method. Said device comprises an observation device for imaging the object and a laser scanning device by which the laser radiation is passed over a predetermined sector of the object for scanning said sector. According to the invention, such a device includes the observation device with a first lens for imaging the object; the laser scanning device with a second lens, through which the laser radiation is guided, in which both lenses with regard to the dimension of the regions to be produced in the images and/or with regard to their focal intercept are different from each other. This invention alternately images the respective region of the object in a first operating mode by the first lens and in a second operating mode by the second lens. It is thus possible to use in both operating modes a lens adapted to the intended imaging purpose.
摘要:
The invention concerns a scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
摘要:
The invention concerns a scanning device for focusing a beam of rays in defined regions of a defined volume, comprising an input optics wherein the beam of rays penetrates first, having at least one first optical element; a focusing optics for focusing the beam of rays exiting from the input optics; and a deflecting device arranged between the first optical element and the focusing optics, for deflecting the beam of rays after it has passed through the first optical element, based on a position of the focus to be adjusted in lateral direction. In order to adjust the position of the focus of the beam of rays in the direction of the beam of rays, and optical element of the input optics can be displaced relative to the deflecting device.
摘要:
A laser slit lamp comprising a slit lamp base, a slit lamp head and a slit lamp microscope. The laser slit lamp is connected with an applicator. It comprises a device for uniting radiation from at least two radiation sources collinearly and for directing the radiation of a treatment beam or working beam onto the location to be treated in or on the eye of a patient, a device for generating a target beam or marking beam for targeting and observing the location to be treated in or on the eye, and an adjusting device in the applicator for changing the intensity and diameter of the working beam spot used for treatment. The radiation sources are laser radiation sources arranged in the slit lamp head, in the slit lamp base or in the slit lamp microscope for generating the working beam, illumination beam and/or target beam. Devices for control, regulation and monitoring are likewise arranged in the interior of the slit lamp.
摘要:
The invention relates to a method for forming curved cuts in a transparent material, in particular in the cornea, by the creation of optical perforations in said material using laser radiation that is focused in the material. The focal point is displaced three-dimensionally to form the cut by lining up the optical perforations. The focal point is displaced in a first spatial direction by a displaceable lens and said focal directions in such a way that it follows the contours of the cut, which lie on a plane that is substantially perpendicular to the first spatial direction.
摘要:
A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
摘要:
A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
摘要:
A method for precise working of material, particularly organic tissue, comprises the step of providing laser pulses with a pulse length between 50 fs and 1 ps and with a pulse frequency from 50 kHz to 1 MHz and with a wavelength between 600 and 2000 nm for acting on the material to be worked. Apparatus, in accordance with the invention, for precise working of material, particularly organic tissue comprising a pulsed laser, wherein the laser has a pulse length between 50 fs and 1 ps and with a pulse frequency of from 50 kHz to 1 MHz is also described.
摘要:
Apparatus and method to generate a stream of pulses having a pulse repetition rate of at least about 50000 pulses per second and a per-pulse length of less than one picosecond, and to scan and focus the stream to an output light pattern suitable to sculpt tissue for a surgical procedure (e.g., ophthalmologic) using at least a high number of pulses to complete the operation in a matter of a few second, e.g., 100000 pulses in less than ten seconds. A laser having a optical fiber gain medium generates a stream of femtosecond pulses. Some embodiments create a preconditioning negative dispersion that compensates for positive dispersion in the scanning system. In some embodiments, a lenticule is cut using the laser and scanning system and is mechanically removed through a side slit formed through the cornea surface.