Abstract:
A camera tuning circuit has a first storage space, a second storage space and a controller. The first storage space stores a first reference camera correction setting for a reference camera module under a first color temperature. The second storage space stores a second reference camera correction setting for the reference camera module under a second color temperature, wherein the second color temperature is different from the first color temperature. The controller receives a default camera correction setting of a target camera module, the first reference camera correction setting, and the second reference camera correction setting, and generates a tuned camera correction setting for the target camera module according to the default camera correction setting, the first reference camera correction setting, and the second reference camera correction setting.
Abstract:
An active noise control system and associated auto-selection method for modeling a secondary path for the active noise control system are provided. The method includes the steps of: receiving a reference signal; filtering the reference signal with a secondary-path estimation filter to obtain a filtered reference signal, wherein the secondary path estimation filter is determined from a plurality of candidate secondary-path estimation filters; filtering the reference signal with an adaptive filter to provide a compensation signal; sensing a residual noise signal at a listening position of the active noise control system; and adapting filter coefficients of the adaptive filter according to the residual noise signal and the filtered reference signal.
Abstract:
An earpiece of a headset uses a first signal and a second signal received from an in-ear microphone and an outside microphone, respectively, to enhance microphone signals. The in-ear microphone is positioned at a proximal side of the earpiece with respect to an ear canal of a user, and the outside microphone is positioned at a distal side of the earpiece with respect to the ear canal. A processing unit includes a filter, which digitally filters out in-ear noise from the first signal using the second signal as a reference to produce a de-noised signal to thereby enhance the microphone signals.
Abstract:
A method for Cellular Text Telephone Modem (CTM) signal transmission includes: converting a CTM transmitter signal carried in a first sampling rate to generate a transmission signal carried in a second sampling rate, wherein the second sampling rate is different from the first sampling rate; and outputting the transmission signal carried in the second sampling rate to a CTM receiver.
Abstract:
A timing control method for a user equipment (UE) in a wireless communications system, including: obtaining a starting time of a data transmission period from information of a data transmission timing received from a base station of a wireless network; obtaining a starting time of a current data processing period; and adjusting a data processing timing so that the adjusted starting time of the current data processing period is ahead of the starting time of the data transmission period by a predetermined time.
Abstract:
A method for Cellular Text Telephone Modem (CTM) signal transmission includes: converting a CTM transmitter signal carried in a first sampling rate to generate a transmission signal carried in a second sampling rate, wherein the second sampling rate is different from the first sampling rate; and outputting the transmission signal carried in the second sampling rate to a CTM receiver.
Abstract:
An earpiece of a headset uses a first signal and a second signal received from an in-ear microphone and an outside microphone, respectively, to enhance microphone signals. The in-ear microphone is positioned at a proximal side of the earpiece with respect to an ear canal of a user, and the outside microphone is positioned at a distal side of the earpiece with respect to the ear canal. A processing unit includes a filter, which digitally filters out in-ear noise from the first signal using the second signal as a reference to produce a de-noised signal to thereby enhance the microphone signals.
Abstract:
A portable device and a method for entering a power-saving mode are provided. An audio signal is transmitted to an earphone via a cable. At least one electrical characteristic on the cable is sensed to generate at least one sensing signal. The at least one sensing signal is sampled to generate at least one data signal. Whether the earphone is in listening position is determined according to the at least one data signal. When it is determined that the earphone is not in listening position, the portable device enters a power-saving mode.
Abstract:
A camera tuning circuit has a first storage space, a second storage space and a controller. The first storage space stores a first reference camera correction setting for a reference camera module under a first color temperature. The second storage space stores a second reference camera correction setting for the reference camera module under a second color temperature, wherein the second color temperature is different from the first color temperature. The controller receives a default camera correction setting of a target camera module, the first reference camera correction setting, and the second reference camera correction setting, and generates a tuned camera correction setting for the target camera module according to the default camera correction setting, the first reference camera correction setting, and the second reference camera correction setting.