Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
An external programming system for programming an implantable medical device includes a user display and a memory storing multiple intracardiac lead images. The intracardiac lead images correspond to lead types and includes electrodes spaced according to the spacing of electrodes of a particular lead type. The programmer selects one of the lead images for display based on an indication of which type of lead has been implanted in a patient. The selected image is displayed to a user as part of a graphical user interface for programming cardiac pacing therapy for the patient.
Abstract:
Systems and methods are described herein for evaluation and adjustment cardiac therapy. The systems and methods may initially evaluate a first pacing parameter while other pacing parameters are fixed to, for example, nominal values, and determine an effective setting for the first pacing parameter. Then, a second pacing parameter may be evaluated while the first pacing parameter is fixed to the previously-determined effective setting. Each evaluation may not test every possible setting for the pacing parameters, and instead, may utilize various processes to limit the settings to a subset of settings to test.
Abstract:
Various embodiments of a bioelectric sensor device and a method of utilizing such device are disclosed. The bioelectric sensor device includes a central portion and an arm extending from the central portion, where at least a portion of the arm extends along an arm axis. The central portion includes an anatomical alignment mark adapted to align the central portion with an anatomical feature of a lateral surface of a torso of a patient. Further, the arm is adapted to be disposed on an anterior or posterior surface of the torso. The bioelectric sensor device also includes a sensor disposed on the arm along the arm axis, and a connector electrically connected to the sensor.
Abstract:
Systems and methods are described herein for configuration of cardiac therapy. The systems and methods may select, or determine, a plurality of different configuration parameters based electrical activity monitored or measured using a plurality of external electrodes. For example, the systems and methods may select, or determine, a left ventricular pacing vector, adaptive or non-adaptive pacing therapy, an interventricular pacing delay, and a atrioventricular pacing delay.
Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
Various embodiments of a system for guiding an instrument through a region of a patient are disclosed. The system includes an instrument and a controller that is adapted to receive ultrasound image data from an ultrasound sensor, receive EM tracking data from an EM tracking system, and identify a physiological landmark of the region of the patient based on the ultrasound image data. The controller is further adapted to determine at least one of a position, orientation, or trajectory of the instrument based on the EM tracking data and generate a graphical user interface showing at least one of the position, orientation, or trajectory of the instrument in relation to a plane of the ultrasound image data, and a target zone that is registered with the physiological landmark.
Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
Systems and methods are described herein for evaluation and adjustment cardiac therapy. The systems and methods may initially evaluate a first pacing parameter while other pacing parameters are fixed to, for example, nominal values, and determine an effective setting for the first pacing parameter. Then, a second pacing parameter may be evaluated while the first pacing parameter is fixed to the previously-determined effective setting. Each evaluation may not test every possible setting for the pacing parameters, and instead, may utilize various processes to limit the settings to a subset of settings to test.
Abstract:
An external programming system for programming an implantable medical device includes a user display and a memory storing multiple intracardiac lead images. The intracardiac lead images correspond to lead types and includes electrodes spaced according to the spacing of electrodes of a particular lead type. The programmer selects one of the lead images for display based on an indication of which type of lead has been implanted in a patient. The selected image is displayed to a user as part of a graphical user interface for programming cardiac pacing therapy for the patient.