Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
Systems, methods, and devices are described herein for evaluation, adjustment, and delivery of adaptive cardiac therapy. The systems, methods, and devices may utilize electrical heterogeneity information to determine and/or select one or more pacing settings and pacing type or configurations for a plurality of different heart rates. The adaptive cardiac therapy may deliver cardiac therapy at selected pacing settings such as, for example, A-V and/or V-V intervals, according to a presently measured heart rate and switch between left ventricular-only or biventricular cardiac pacing therapy also according to the presently measured heart rate.
Abstract:
Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
Abstract:
A lead-in-lead system may include a first implantable lead having a first electrode and a second implantable lead having a second electrode guided by the first implantable lead to an implantation site. The second electrode may be implanted in a patient's heart distal to the first electrode at the same implantation site or at a second implantation site. Various methods may be used to deliver the lead-in-lead system to one or more implantation sites including at the triangle of Koch for ventricle-from-atrium (VfA) therapy, at the right ventricular septal wall for dual bundle-branch pacing, or in the coronary vasculature for left side sensing and pacing.
Abstract:
Systems, methods, and graphical user interfaces are described herein for identification of optimal electrical vectors for use in assisting a user in implantation of implantable electrodes to be used in cardiac therapy. Cardiac improvement information may be generated for each pacing configuration, and one or more pacing configuration may be selected based on the cardiac improvement information. Optimal electrical vectors using the selected pacing configurations may be identified using longevity information generated for each electrical vector. Electrodes may then be implanted for use in cardiac therapy to form the optimal electrical vector.
Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
An electrode apparatus includes a portable amplifier and a plurality of external electrodes to be disposed proximate a patient's skin. A portable computing apparatus is operably coupled to the electrode apparatus. The portable computing apparatus is configured to monitor electrical activity from tissue of a patient using the plurality of external electrodes to generate a plurality of electrical signals over time. The portable computing apparatus is configured to perform at least one of optimizing at least one parameter of the of the implantable pacing device based on the plurality of electrical signals and determining cardiac synchrony based on the plurality of electrical signals.
Abstract:
Disclosed is a system to assist in selecting and/or suggesting an instrument for a procedure. The suggestion may be based upon or include analysis of image data of a subject. The instrument may be suggested for placement inside a tubular structure.
Abstract:
Systems, interfaces, and methods are described herein related to the evaluation of a patient's cardiac conduction system and evaluation of cardiac conduction system pacing therapy being delivered to the patient's cardiac conduction system. Evaluation of the patient's cardiac conduction system may utilize a plurality of breakthrough maps to determine where a cardiac conduction system block may be located. Evaluation of cardiac conduction system pacing therapy may utilize various electrical heterogeneity information monitored before and during delivery of cardiac conduction system pacing therapy.
Abstract:
Systems, methods, and interfaces are described herein for assisting in noninvasive location selection for an implantable electrode for use in cardiac therapy. Mechanical motion information and surrogate electrical activation times may be used to identify one or more candidate site regions.