Abstract:
A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the tubular stent. The anti-paravalvular leakage component includes a radially-compressible annular scaffold, which is a sinusoidal patterned ring of self-expanding material, and an impermeable membrane extending over the annular scaffold. The anti-paravalvular leakage component has an expanded configuration in which at least segments of the annular scaffold curve radially away from the tubular stent. Alternatively, the anti-paravalvular leakage component includes a plurality of self-expanding segments and an annular sealing element coupled to inner surfaces of the segments. The anti-paravalvular leakage component has an expanded configuration in which the segments curve radially away from the tubular stent and the annular sealing element is positioned between an outer surface of the tubular stent and inner surfaces of the segments. The segments may be orthogonal or oblique to the outer surface of the tubular stent.
Abstract:
A transcatheter valve prosthesis includes a stent and a prosthetic valve. The stent includes an inflow portion, an outflow portion, and a transition portion extending between the inflow portion and the outflow portion. The transition portion includes a plurality of axial frame members, and three of the plurality of the axial frame members are commissure posts. At least two of the plurality of the axial frame members are commissure posts having a first end connected to a crown of the inflow portion and an unattached second end disposed within the outflow portion such that a pair of struts of the outflow portion intersect each commissure post at a mid-portion thereof. The prosthetic valve is configured to substantially block blood flow in one direction to regulate blood flow through a central lumen of the stent.
Abstract:
Prosthetic heart valve devices and associated methods for percutaneous or transcatheter heart valve replacement are disclosed herein. A heart valve prosthesis configured in accordance herewith includes a frame having a valve support and a plurality of support arms extending therefrom. The plurality of support arms may include a main support arm configured to extend from the valve support for capturing at least a portion of a valve leaflet of a native heart valve therebetween when the valve prosthesis is in an expanded configuration and deployed within the native heart valve. In addition, the plurality of support arms may include multiple supplemental support arms disposed about the circumference of the valve support that when deployed in the expanded configuration are configured to at least partially engage subannular tissue at the native heart valve.
Abstract:
A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the stent which includes a plurality of self-expanding struts and an annular sealing membrane. Each strut has a first end coupled to a distal end of the stent and a second end not coupled to the stent. Each anti-paravalvular leakage component is moveable between a compressed configuration and a deployed configuration. In the compressed configuration, each strut extends distally away from the distal end of the stent. In the deployed configuration, each strut extends proximally away from the distal end of the stent. In an embodiment hereof, the deployed strut has a C-shape and is twisted such that the C-shape lies in a plane substantially along or tangential with the outer surface of the stent. In another embodiment hereof, the deployed strut is rolled-up and extends radially away from the outer surface of the stent.
Abstract:
Prosthetic heart valve devices and associated methods for percutaneous or transcatheter heart valve replacement are disclosed herein. A heart valve prosthesis configured in accordance herewith includes a frame having a valve support and a plurality of support arms extending therefrom. The plurality of support arms may include a main support arm configured to extend from the valve support for capturing at least a portion of a valve leaflet of a native heart valve therebetween when the valve prosthesis is in an expanded configuration and deployed within the native heart valve. In addition, the plurality of support arms may include multiple supplemental support arms disposed about the circumference of the valve support that when deployed in the expanded configuration are configured to at least partially engage subannular tissue at the native heart valve.
Abstract:
Prosthetic heart valve devices and associated methods for percutaneous or transcatheter heart valve replacement are disclosed herein. A heart valve prosthesis configured in accordance herewith includes a frame having a valve support and a plurality of support arms extending therefrom. The plurality of support arms may include a main support arm configured to extend from the valve support for capturing at least a portion of a valve leaflet of a native heart valve therebetween when the valve prosthesis is in an expanded configuration and deployed within the native heart valve. In addition, the plurality of support arms may include multiple supplemental support arms disposed about the circumference of the valve support that when deployed in the expanded configuration are configured to at least partially engage subannular tissue at the native heart valve.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
Abstract:
Heart valve prosthesis are disclosed that include a frame or support structure having an inflow portion, a valve-retaining tubular or central portion and a pair of support arms. The inflow portion radially extends from a first end of the valve-retaining tubular portion and the pair of support arms are circumferentially spaced apart and radially extend from an opposing second end of the valve-retaining tubular portion.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.
Abstract:
A method of preventing paravalvular leakage includes concurrent delivery of a heart valve prosthesis and an annular sealing component. During delivery, the sealing component is moved from a first position to a second position of the heart valve prosthesis which is longitudinally spaced apart from the first position of the heart valve prosthesis. The sealing component is secured around the heart valve prosthesis at the second position by a contoured outer surface of the heart valve prosthesis. The sealing component may be a flexible ring or may be a cylindrical flexible sleeve having a plurality of ribs longitudinally extending over the cylindrical sleeve. The ribs operate to deploy the sealing component such that at least a portion of the cylindrical sleeve buckles outwardly away from the outer surface of the heart valve prosthesis.