摘要:
An implantable medical device comprises a sensing module configured to obtain electrical signals from one or more electrodes and a control module configured to process the electrical signals from the sensing module in accordance with a tachyarrhythmia detection algorithm to monitor for a tachyarrhythmia. The control module detects initiation of a pacing train delivered by a second implantable medical device, determines a type of the detected pacing train, and modifies the tachyarrhythmia detection algorithm based on the type of the detected pacing train.
摘要:
A method and medical device for detecting a cardiac event that includes sensing cardiac signals from a plurality of electrodes, the plurality of electrodes forming a first sensing vector and a second sensing vector, identifying the cardiac event as one of a shockable event and a non-shockable event in response to first processing of a first interval sensed along the first sensing vector during a predetermined sensing window and a second interval simultaneously sensed along the second sensing vector, performing second processing of the first interval and the second interval, different from the first processing, in response to the cardiac event being identified as a shockable event, and determining whether to delay identifying the cardiac event being shockable in response to the second processing of the first interval and the second interval.
摘要:
A method and system for use with an implantable medical device for subcutaneous implant within a patient to determine a likelihood of the patient experiencing a cardiac event that includes sensing a cardiac signal along a plurality of different sensing vectors, determining state information of each vector of the plurality of sensing vectors, determining a cross correlation of the determined state information of each vector of the plurality of sensing vectors, comparing the cross correlation of the determined state information of each vector of the plurality of sensing vectors to a threshold, and detecting the cardiac event in response to the comparing.
摘要:
In some examples, a system can be used for delivering cardiac resynchronization therapy (CRT). The system may include a pacing device configured to be implanted within a patient. The pacing device can include a plurality of electrodes, signal generation circuitry configured to deliver ventricular pacing via the plurality of electrodes, and a sensor configured to produce a signal that indicates mechanical activity of the heart. Processing circuitry can be configured to identify one or more features of a cardiac contraction within the signal, and determine whether the contraction was a fusion beat based on the one or more features.
摘要:
In some examples, a system may be used for delivering cardiac therapy or cardiac sensing. The system may include an in implantable medical device including a housing configured to be implanted on or within a heart of a patient, a fixation element configured to attach the housing to the heart; and a sensor configured to produce a signal that indicates motion of the implantable medical device. Processing circuitry may be configured to identify one or more impingements between the housing and another structure, such as a tissue of the heart, based on the signal from the sensor and provide an indication of the one or more impingements to a user.
摘要:
The present disclosure pertains to cardiac pacing methods and systems, and, more particularly, to cardiac resynchronization therapy (CRT). In particular, the present disclosure pertains to determining whether a patient is experiencing atrial fibrillation (AF). If the patient is experiencing AF, the efficacy of CRT is determined. A signal is sensed in response to a ventricular pacing stimulus. Through signal processing, a number of features are parsed from the signal and a determination is made as to whether the ventricular pacing stimulus evoked a response from the ventricle.
摘要:
Techniques for evaluating cardiac electrical dyssynchrony are described. In some examples, an activation time is determined for each of a plurality of torso-surface potential signals. The dispersion or sequence of these activation times may be analyzed or presented to provide variety of indications of the electrical dyssynchrony of the heart of the patient. In some examples, the locations of the electrodes of the set of electrodes, and thus the locations at which the torso-surface potential signals were sensed, may be projected on the surface of a model torso that includes a model heart. The inverse problem of electrocardiography may be solved to determine electrical activation times for regions of the model heart based on the torso-surface potential signals sensed from the patient.
摘要:
Methods and/or devices may be configured to monitor ventricular activation times and modify an atrioventricular delay (AV delay) based on the monitored ventricular activation times. Further, the methods and/or devices may determine whether the AV delay should be modified based on the measured activation times before modifying the AV delay.
摘要:
An implantable medical device system is configured to deliver cardiac pacing by receiving a cardiac electrical signal by sensing circuitry of a first device via a plurality of sensing electrodes, identifying by a control module of the first device a first cardiac event from the cardiac electrical signal, setting a first pacing interval in response to identifying the first cardiac event, controlling a power transmitter of the first device to transmit power upon expiration of the first pacing interval, receiving the transmitted power by a power receiver of a second device; and delivering at least a portion of the received power to a patient's heart via a first pacing electrode pair of the second device coupled to the power receiver.
摘要:
Generally, the disclosure is directed one or more methods or systems of cardiac pacing employing a right ventricular electrode and a plurality of left ventricular electrodes. Pacing using the right ventricular electrode and a first one of the left ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a first degree of resynchronization based on a sum of differences of activation times and corresponding activation times. Pacing using the right ventricular electrode and a second one of the ventricular electrodes and measuring activation times at other ones of the left ventricular electrodes. Computing a second degree of resynchronization based on the sum of differences of activation times and corresponding activation times. Selecting one of the left ventricular electrodes for delivery of subsequent pacing pulses based on the computed degrees of resynchronization.