Abstract:
Disclosed is a method which combines catalytic cracking and olefin production using a coked catalytic cracking catalyst as a dehydrogenation catalyst to dehydrogenate an alkane feed stream and form an olefin rich product stream. The method uses a staged backmixed regeneration system to form the dehydrogenation catalyst and to fully reactivate deactivated cracking catalyst for reuse in the cracking reaction. The catalyst preferably comprises a crystalline tetrahedral framework oxide component.
Abstract:
An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone after first being reduced in temperature by introduction of an effective amount of diluent, such as steam. A light paraffin stream is introduced into this stream of hot solids between the point where the diluent is added and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of paraffins to olefins.
Abstract:
An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor and a heater with hot solids recycling between the coker reactor and the heater. A light paraffin stream is introduced into the line wherein the hot particles are recycled to the coking zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
Abstract:
Disclosed is a method which combines catalytic cracking and olefin production using a coked catalytic cracking catalyst to dehydrogenate an alkane feed stream and form an olefin rich product stream. Preferably, the coked catalytic cracking catalyst has a carbon content of about 0.2-10 wt. %. The catalyst preferably comprises a crystalline tetrahedral framework oxide component.
Abstract:
The present invention relates to an integrated fluid coking/hydrogen production process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone of the reactor. Methane and steam are introduced into the stream of hot solids passing from the gasifier to the scrubbing zone. The hot particles act to catalyze the conversion of methane to carbon monoxide and hydrogen in the presence of steam.
Abstract:
The present invention relates to an integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to a satellite reactor. A light paraffin stream is introduced into directly into this stream of hot solids passing to the satellite reactor or into the satellite reactor. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
Abstract:
An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is passed to the scrubbing zone or to a satellite fluidized reactor. A first stream containing an effective amount of C.sub.1 to C.sub.2 paraffins is introduced into this stream of hot solids between the point where the diluent is added and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of paraffins to olefins. A second stream containing C.sub.3 to C.sub.10 paraffins is introduced downstream of the introduction of said first stream.
Abstract:
An integrated fluid coking/paraffin dehydrogenation process. The fluid coking unit is comprised of a fluid coker reactor, a heater, and a gasifier. Solids from the fluidized beds are recycled between the coking zone and the heater and between the heater and the gasifier. A separate stream of hot solids from the gasifier is diluted with hot solids from the heater then passed to the scrubbing zone of the coker reactor. A light paraffin stream is introduced into this stream of hot solids between the point where the heater solids are introduced and the scrubbing zone. The hot particles act to catalyze the dehydrogenation of the paraffins to olefins.
Abstract:
Systems and methods are provided for slurry hydroconversion of a heavy oil feed, such as an atmospheric or vacuum resid. The systems and methods allow for slurry hydroconversion using catalysts with enhanced activity and/or catalysts that can be recycled as a side product from a complementary refinery process.
Abstract:
The present invention relates to a process for desulfurizing bitumen and other heavy oils such as low API gravity, high viscosity crudes, tar sands bitumen, or shale oils with alkali metal compounds under conditions to promote in-situ regeneration of the alkali metal compounds. The present invention employs the use of superheated water and hydrogen under conditions to improve the desulfurization and alkali metal hydroxide regeneration kinetics at sub-critical temperatures.