摘要:
A method of processing a hydrocarbon feed may comprise fractionating the hydrocarbon feed into a light stream, a middle stream and a heavy stream; hydrotreating the heavy stream to form a hydrotreated heavy stream; feeding the light stream to a first Fluid Catalytic Cracking (FCC) reaction zone; feeding the middle stream to a second FCC reaction zone; and feeding the hydrotreated heavy stream to a third FCC reaction zone, thereby producing a heavy product stream comprising light olefins; and feeding one or more of the product streams to one or more fractionators, thereby producing one or more finished product streams and one or more recycle streams comprising one or more of light cycle oil (LCO), heavy cycle oil (HCO), and slurry oil; and hydrotreating one or more of the recycle streams to form the hydrotreated heavy stream.
摘要:
An integrated process for upgrading a hydrocarbon oil feed stream includes solvent deasphalting the hydrocarbon oil stream; processing the heavy residual hydrocarbons in a gasification unit to form syngas and gasification residue; hydrotreating the deasphalted oil stream to form a C3-C4 hydrocarbon stream, a light C5+ hydrocarbon stream, and a heavy C5+ hydrocarbon stream; dehydrogenating the C3-C4 hydrocarbon stream to form propylene and butylene; steam enhanced catalytically cracking the light C5+ hydrocarbon stream; steam enhanced catalytically cracking the heavy C5+ hydrocarbon stream; passing at least a portion of the light steam enhanced catalytically cracked stream, the heavy steam enhanced catalytically cracked stream, or both to a product separator to produce a olefin product stream, a naphtha product stream, and a BTX product stream; and processing the naphtha product stream in the aromatics complex to produce benzene and xylenes.
摘要:
An integrated process for upgrading a hydrocarbon oil feed stream utilizing a delayed coker, steam enhanced catalytic cracker, and an aromatics complex includes solvent deasphalting the hydrocarbon oil stream; delayed coking the heavy residual hydrocarbons; hydrotreating the delayed coker product stream and the deasphalted oil stream to form a C3-C4 hydrocarbon stream, a light C5+ hydrocarbon stream, and a heavy C5+ hydrocarbon stream; dehydrogenating the C3-C4 hydrocarbon stream to form propylene and butylene; steam enhanced catalytically cracking the light C5+ hydrocarbon stream; steam enhanced catalytically cracking the heavy C5+ hydrocarbon stream; passing at least a portion of the light steam enhanced catalytically cracked stream, the heavy steam enhanced catalytically cracked stream, or both to a product separator to produce a olefin product stream, a naphtha product stream, and a BTX product stream; and processing the naphtha product stream in the aromatics complex to produce benzene and xylenes.
摘要:
In accordance with one or more embodiments herein, an integrated process for upgrading a hydrocarbon oil feed stream utilizing a delayed coker, steam enhanced catalytic cracker, and an aromatics complex includes solvent deasphalting the hydrocarbon oil stream; delayed coking the heavy residual hydrocarbons; hydrotreating the delayed coker product stream and the deasphalted oil stream to form a light C5+ hydrocarbon stream and a heavy C5+ hydrocarbon stream; steam enhanced catalytically cracking the light C5+ hydrocarbon stream; steam enhanced catalytically cracking the heavy C5+ hydrocarbon stream; passing at least a portion of the light steam enhanced catalytically cracked stream, the heavy steam enhanced catalytically cracked stream, or both to a product separator to produce a olefin product stream, a naphtha product stream, and a BTX product stream; and processing the naphtha product stream in the aromatics complex to produce benzene and xylenes.
摘要:
A system for processing plastic waste may include a feed line, a feed fractionator, a hydrotreater, a catalytic reforming unit, a heavy oil cracker, and a steam cracker. A pyrolyzed plastics feed is separated into light, medium, and heavy hydrocarbon streams. The hydrotreater removes sulfur, and the catalytic reforming unit produces a circular aromatic-rich stream. The heavy oil cracker generates cracked streams. The steam cracker produces a circular olefin stream from a cracked stream. A system for processing plastic waste may include the feed line, the feed fractionator, the hydrotreater, a medium hydrocarbon fractionator, the catalytic reforming unit, a full-range reforming unit, the heavy oil cracker, and the steam cracker. The medium hydrocarbon fractionator produces two hydrocarbon streams. The full-range naphtha reforming unit produces a second circular aromatic-rich stream.
摘要:
According to an embodiment disclosed, a feedstock hydrocarbon may be processed by a method which may include separating the feedstock hydrocarbon into a lesser boiling point hydrocarbon fraction and a greater boiling point hydrocarbon fraction, cracking the greater boiling point hydrocarbon fraction in a high-severity fluid catalytic cracking reactor unit to form a catalytically cracked effluent, cracking the lesser boiling point hydrocarbon fraction in a steam cracker unit to form a steam cracked effluent, and separating one or both of the catalytically cracked effluent or the steam cracked effluent to form two or more petrochemical products. In one or more embodiments, the feedstock hydrocarbon may include crude oil and one of the petrochemical products may include light olefins.
摘要:
Renewable fuels are produced in commercial quantities and with enhanced efficiency by integrating a bio-oil production system with a conventional petroleum refinery so that the bio-oil is co-processed with a petroleum-derived stream in the refinery. The techniques used to integrate the bio-oil production system and conventional petroleum refineries are selected based on the quality of the bio-oil and the desired product slate from the refinery.
摘要:
A method and apparatus for processing hydrocarbons are described. The method includes fractionating a hydrocarbon stream to form at least two fractions. The first fraction is reformed to form a reformate stream, and the reformate stream is introduced into an aromatics processing zone to produce aromatic products. At least a portion of the second fraction is cracked in a fluid catalytic cracking unit. A selectively hydrogenated light naphtha stream is formed by separating the cracked hydrocarbon stream into at least two streams and selectively hydrogenating the light naphtha stream, or selectively hydrogenating the cracked hydrocarbon stream and separating the hydrogenated cracked hydrocarbon stream into at least two streams. Aromatics are extracted from the selectively hydrogenated light naphtha stream forming an extract stream and a raffinate stream. The extract stream is hydrotreated, sent to the aromatics processing zone to produce additional aromatic products.
摘要:
A linear alkyl benzene product and production of linear alkylbenzene from a natural oil are provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
摘要:
A method for producing a linear alkylbenzene product from a bio-renewable feedstock having a mixture of naturally-derived hydrocarbons includes separating the mixture of naturally-derived hydrocarbons into a naphtha portion and a distillate portion, reforming the naphtha portion, and using a high purity aromatics recovery process on the reformed naphtha portion to produce benzene. The method further includes separating a normal paraffins portion from the distillate portion and dehydrogenating the normal paraffins portion to produce mono-olefins. Still further, the method includes reacting the benzene and the mono-olefins to produce the linear alkylbenzene product.