Abstract:
Reactor for recovery or recycling of hydrocarbon products from hydrocarbon-containing material by decomposing and gasifying the material in a reactor housing, comprising a gas/particle separator device arranged to separate solid particles accompanying the gas and to return these particles directly to the reactor housing in the opposite direction to axially flowing gasified hydrocarbon products, and/or comprising a rotor shaft with axially running channels which are in flow communication with a coolant, and/or comprising a radial play formed between the periphery of a rotor and the inside of the reactor housing and amounting to at least 3 cm and at most 6 cm.
Abstract:
Reactor for recovery or recycling of hydrocarbon products from hydrocarbon-containing material by decomposing and gasifying the material in a reactor housing, comprising a gas/particle separator device arranged to separate solid particles accompanying the gas and to return these particles directly to the reactor housing in the opposite direction to axially flowing gasified hydrocarbon products, and/or comprising a rotor shaft with axially running channels which are in flow communication with a coolant, and/or comprising a radial play formed between the periphery of a rotor and the inside of the reactor housing and amounting to at least 3 cm and at most 6 cm.
Abstract:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and gas oil steam cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline aromatics extraction zone within the battery limits. Feeds to the gas oil steam cracker include gas oil range intermediates from the vacuum gas oil hydroprocessing zone. Furthermore, vacuum residue is processed in a delayed coker unit to produce coker naphtha, which is hydrotreated and passed as additional feed to aromatics extraction zone and/or the mixed feed steam cracker, and coker gas oil range intermediates as additional feed to the gas oil hydroprocessing zone.
Abstract:
Process scheme configurations are disclosed that enable conversion of crude oil feeds with several processing units in an integrated manner into petrochemicals. The designs utilize minimum capital expenditures to prepare suitable feedstocks for the steam cracker complex. The integrated process for converting crude oil to petrochemical products including olefins and aromatics, and fuel products, includes mixed feed steam cracking and gas oil steam cracking. Feeds to the mixed feed steam cracker include light products and naphtha from hydroprocessing zones within the battery limits, recycle streams from the C3 and C4 olefins recovery steps, and raffinate from a pyrolysis gasoline aromatics extraction zone within the battery limits. Feeds to the gas oil steam cracker include gas oil range intermediates from the vacuum gas oil hydroprocessing zone. Furthermore, vacuum residue is processed in a delayed coker unit to produce coker naphtha, which is hydrotreated and passed as additional feed to aromatics extraction zone and/or the mixed feed steam cracker, and coker gas oil range intermediates as additional feed to the gas oil hydroprocessing zone.
Abstract:
The present invention relates to a system and a process for converting heavy oils into light hydrocarbon products and electric power. The system comprises a CFB reactor for thermal cracking of heavy oils to generate light hydrocarbon products, coupled with a CFB boiler power plant for converting coke particles produced in the CFB reactor into flue gas and then producing steam for generation of electric power. The system and process of the present invention efficiently produces valuable products from heavy oils (electric power and a full range of hydrocarbon products ranging from Heavy Coker Gas Oil to refinery fuel gas) with negligible coke production and minimal or no generation of low heating value gas.
Abstract:
A feed injector for a circulating fluid bed reactor is fitted with a discharge nozzle with a circular, radially notched discharge orifice to improve the surface-to-volume ratio of the spray pattern formed by the nozzle. The feed injector is useful for injecting fluids into various types of circulating fluid bed reactors in which good contact between the components of the fluidized bed and the injected fluid is required. It is particularly useful in fluid coking reactors.
Abstract:
The liquid feed nozzle assemblies for a circulating fluid bed reactor comprise (i) a throttle body premixer to combine liquid feed with atomization steam to form a liquid feed/steam mixture comprising gas bubbles in liquid; (ii) a conduit connected to the premixer and to a discharge nozzle to convey a flow of the liquid/steam mixture created by the premixer to the nozzle body; (iii) a discharge nozzle connected to the flow conduit to shear the liquid feed/steam mixture to create liquid feed droplets of reduced size and (iv) a disperser at the outlet of the discharge nozzle to provide a spray jet of liquid feed having an increased surface area relative to a cylindrical jet. The nozzle assembles are particularly useful in fluid coking units using heavy oil feeds such a tar sands bitumen.
Abstract:
A method, system, and apparatus for separation in processing of feedstocks are disclosed. According to one embodiment, an apparatus comprises a tubular vessel having a square pipe entry and a vapor outlet, wherein the vapor outlet is positioned at the top of the tubular vessel, and wherein the square pipe entry is tangential to an inner diameter of the tubular vessel; a barrel positioned below the tubular vessel; and a double isolation knife valve positioned between the tubular vessel and the barrel, wherein a stream of gas and solids enters the tubular vessel through the square pipe entry, and wherein the gas and solids are separated by using centrifugal force, and wherein the gas exits the vapor outlet and the solids are collected in the barrel.
Abstract:
Integrated slurry hydrocracking (SHC) and coking methods for making slurry hydrocracking (SHC) distillates are disclosed. Representative methods involve passing a slurry comprising a vacuum column resid, a liquid coker product, and a solid particulate through an SHC reaction zone in the presence of hydrogen to obtain the SHC distillate. Atmospheric distillation in the SHC product recovery section yields a combined SHC gas oil/SHC pitch stream that is sent to coking to generate the liquid coker product. In a representative embodiment, vacuum distillation in the SHC product recovery is avoided, thereby eliminating equipment that is often most susceptible to fouling.
Abstract:
A process and apparatus for cracking a hydrocarbon feed containing resid, comprising: heating a hydrocarbon feedstock containing resid; passing said heated hydrocarbon feedstock to a vapor/liquid separator; flashing said heated hydrocarbon feedstock in said vapor/liquid separator to form a vapor phase and a liquid phase containing said resid; passing at least a portion of said resid-containing liquid phase from said vapor/liquid separator to a thermal conversion reactor operating at 649° C. or more, wherein the thermal conversion reactor contains coke particles; and converting at least a portion of said resid into olefins.