Abstract:
There is provided a liquid crystal display device including a display screen comprised of a plurality of areas in each of which a pixel pattern is formed, wherein any two areas located adjacent to each other, among the areas, have at least two stitches therebetween.
Abstract:
Light exposure areas 103 and light masking areas 104 in a sole reticle are arrayed in alternation to one another in both the longitudinal and transverse directions. Substrate is exposed to light by multi-domain light exposure using this reticle so that the respective areas of the reticle exposed to light with respective shots A to B, B to C . . . , N to M are not adjacent to one another in the boundary portions of the reticle shifted for executing the respective shots, thus relaxing the difference in illuminance between the respective shots and the difference in finish of the boundary portions of the shots, such differences becoming imperceptible to human eyes upon displaying liquid crystal display apparatus.
Abstract:
The method of fabricating a liquid crystal display device includes the steps of (a) fabricating a switching device on a substrate, (b) forming an interlayer insulating film on the substrate such that the switching device is covered with the interlayer insulating film, and (c) forming a transparent electrode on the interlayer insulating film, the transparent electrode being electrically connected to the switching device through the interlayer insulating film, the step (c) including (c1) depositing electrically conductive, transparent and amorphous material on the interlayer insulating film, (c2) patterning the material into the transparent electrode, and (c3) turning the transparent electrode into polysilicon by thermal annealing carried out after formation of an alignment film.