Abstract:
The disclosure provides a light cabinet, including multiple light boards and multiple light-board controllers. The light boards form a first light-board array of the light cabinet. The light-board controllers are arranged one-to-one on the light boards. The light-board controllers of the light boards in a first column of the first light-board array are connected in series to form a first controller string. The output terminal of the first controller string is connected electrically to an input terminal of a second controller string in a corresponding column of a second light-board array of another light cabinet. The input terminal of the first controller string is connected electrically to a first output terminal of a video data splitter (or an output terminal of a third controller string in a corresponding column of a third light-board array of yet another light cabinet).
Abstract:
The disclosure provides an image uniformity compensation device. The image uniformity compensation device includes a local pre-compensation circuit, a chromaticity uniformity compensation circuit, a local post-compensation circuit, and a luminance uniformity correction circuit. A local pre-conversion performed by the local pre-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from an optical non-linear domain to an optical linear domain to generate a corresponding region in multiple regions of a converted frame. A local post-conversion performed by the local post-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from the optical linear domain to the optical non-linear domain to generate a corresponding region in multiple regions of a converted frame.
Abstract:
A signal processing circuit, complying with DisplayPort standard and operated in a display device which is as a DisplayPort sink device, includes a main physical circuit, which is configured to receive a first signal from one of a plurality of DisplayPort connectors of the display device connected to a first DisplayPort source device and a plurality of auxiliary physical circuits. Only a first auxiliary physical circuit of the plurality of auxiliary physical circuits is enabled to receive a second signal from the DisplayPort connector connected to the first DisplayPort source device.
Abstract:
A signal processing circuit, complying with DisplayPort standard and operated in a display device which is as a DisplayPort sink device, includes a main physical circuit, which is configured to receive a first signal from one of a plurality of DisplayPort connectors of the display device connected to a first DisplayPort source device and a plurality of auxiliary physical circuits. Only a first auxiliary physical circuit of the plurality of auxiliary physical circuits is enabled to receive a second signal from the DisplayPort connector connected to the first DisplayPort source device.
Abstract:
A device for image processing includes a video signal receiver, for receiving at least one video signal, wherein an image frame of the at least one video signal includes: a plurality of pixel groups; a color engine; and an output stage, coupled to the color engine, for outputting the adjusted at least one video signal. The color engine includes: a local adjusting unit, configured to locally adjust at least one of color hue, luminance factor and saturation of a specific pixel group of the pixel groups without adjusting any other pixel group of the pixel groups, wherein the specific pixel group has color hue in a predetermined range that is a part of a full range of color hue; and a global adjusting unit, configured to globally adjust at least one of color hue, luminance factor and saturation of each of the pixels of the image frame.
Abstract:
A device for image processing includes: a video signal receiver, for receiving at least one video signal; a color engine, comprising a local adjusting unit, for dividing pixels of an image frame of the at least one video signal into multiple pixel groups according to luminance factors of the pixels in HSI color space and adjusting the luminance factors of a specific pixel group of the pixel groups having luminance factors in a predetermined range that is a part of a full range of luminance factor by moving the pixels of the specific pixel group from a region to another region of the HSI color space without changing color axes of the HSI color space.
Abstract:
A device for image processing includes a video signal receiver, for receiving at least one video signal, wherein an image frame of the at least one video signal includes: a plurality of pixel groups; a color engine; and an output stage, coupled to the color engine, for outputting the adjusted at least one video signal. The color engine includes: a local adjusting unit, configured to locally adjust at least one of color hue, luminance factor and saturation of a specific pixel group of the pixel groups without adjusting any other pixel group of the pixel groups, wherein the specific pixel group has color hue in a predetermined range that is a part of a full range of color hue; and a global adjusting unit, configured to globally adjust at least one of color hue, luminance factor and saturation of each of the pixels of the image frame.
Abstract:
The disclosure provides an image uniformity compensation device. The image uniformity compensation device includes a local pre-compensation circuit, a chromaticity uniformity compensation circuit, a local post-compensation circuit, and a luminance uniformity correction circuit. A local pre-conversion performed by the local pre-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from an optical non-linear domain to an optical linear domain to generate a corresponding region in multiple regions of a converted frame. A local post-conversion performed by the local post-compensation circuit includes the following. An image frame is divided into multiple regions, and each of the regions is converted from the optical linear domain to the optical non-linear domain to generate a corresponding region in multiple regions of a converted frame.
Abstract:
The disclosure provides a light cabinet, including multiple light boards and multiple light-board controllers. The light boards form a first light-board array of the light cabinet. The light-board controllers are arranged one-to-one on the light boards. The light-board controllers of the light boards in a first column of the first light-board array are connected in series to form a first controller string. The output terminal of the first controller string is connected electrically to an input terminal of a second controller string in a corresponding column of a second light-board array of another light cabinet. The input terminal of the first controller string is connected electrically to a first output terminal of a video data splitter (or an output terminal of a third controller string in a corresponding column of a third light-board array of yet another light cabinet).