Abstract:
A server associated with a core network may include a memory storing computer-readable instructions; and at least one processor coupled to the memory, the at least one processor configured to execute the computer-readable instructions to, generate a list of preferred instances of a first network function, transmit the list of the preferred instances to a server associated with a third network function, and receive a request to establish a communication session with a selected instance selected from the list of the preferred instances, if the server is associated with a selected instance of a second network function associated with the selected instance of the first network function.
Abstract:
The present invention addresses method, apparatus and computer program product for dynamic cell clustering for Coordinated Multipoint operation. Clustering metric information defining relevant metrics for making cell clustering decision for Coordinated Multipoint operation are received from a network element serving a neighboring cell, and based on the received clustering metric information, it is decided whether to include the neighboring cell to a cluster for Coordinated Multipoint operation.
Abstract:
An apparatus is disclosed, comprising means for identifying a plurality of user equipment (UE), each transmitting one or more uplink packets for decoding at a base station associated with a given cell of a radio network. The apparatus further comprises means for clustering the identified user equipment into joint processing groups, each joint processing group comprising the identities of two or more user equipment as clustered and means for performing, in a first processing stage, joint processing of the uplink data streams for identified user equipment within common joint processing groups using one or more first processing algorithms to produce corresponding first processed uplink data streams. The apparatus further discloses means for performing one or more subsequent processing stages on the first processed uplink data streams, subsequent to the joint processing, to produce decoded uplink data streams, the one or more subsequent processing stages using one or more second processing algorithms, different from the first processing algorithm.
Abstract:
This document discloses a solution for selecting a transmission direction in a cell. A method comprises: determining, by a controller associated with a cell of a cellular communication system, a traffic asymmetry metric for the cell, the traffic asymmetry metric representing asymmetry between uplink and downlink traffic in the cell; comparing, by the controller, the traffic asymmetry metric with a threshold; upon determining, by the controller on the basis of the comparison, that the traffic asymmetry metric is one of greater and lower than the threshold, selecting a first transmission direction for a time interval; upon determining, by the controller on the basis of the comparison, that the traffic asymmetry metric is the other one of greater and lower than the threshold, selecting for the time interval a second transmission direction different from the first transmission direction, wherein the second transmission direction is a nominal transmission direction determined as common to a cell cluster comprising the cell and a set of neighboring cells, and wherein the controller determines the nominal transmission direction on the basis of traffic condition metrics acquired for the cell and for the set of neighboring cells; and causing data communication to the selected transmission direction in the cell during the time interval.
Abstract:
An apparatus, method and computer program is described above: determining a coupling gain for a user device within a cell of a mobile communication system; comparing the determined coupling gain with a coupling gain threshold; setting the user device to operate in a device-specific CSI-RS mode of operation in the event that the determined coupling gain is less than the coupling gain threshold, wherein, in the device-specific CSI-RS mode of operation, the user device is configured to use device-specific reference signal transmissions for the determination of channel state information; and setting the user device to operate in a cell-specific CSI-RS mode of operation in the event that the determined coupling gain is not less than the coupling gain threshold, wherein, in the cell-specific CSI-RS mode of operation, the user device is configured to use cell-specific reference signal transmissions for the determination of channel state information.
Abstract:
Inter-radio access technology (inter-RAT) load balancing under multi-carrier dynamic spectrum sharing (SS) context is provided. One method may include splitting shared radio-frequency resources into orthogonal resource pool shares. The method may include receiving a load metric for each of a plurality of radio access technologies. The method may include assigning, based on the load metric, one of the resource pool shares to each of the plurality of radio access technologies. In addition, the method may include dynamically adjusting a proportion of the assigned resource pool shares based on the load metric of each of the plurality of radio access technologies at corresponding carriers. The method may include assigning a primary carrier to a user equipment based on the load metric, the resource pool share, a coverage of the carriers' physical channels, and a type of multi-carrier operation for each of the plurality of radio access technologies.
Abstract:
Systems, methods, apparatuses, and computer program products for determining a grid-of-beams (GoB) are provided. One method may include collecting network data for training a neural network, train the neural network, using the collected data, to learn a non-discounted cumulative reward Q that evaluates a benefit of including a given beam into a grid-of-beams (GoB), iteratively applying the trained neural network to select at least one optimal beam to include in the grid-of-beams (GoB), and selecting one or more beams from the grid-of-beams (GoB) to transmit to a user equipment or to receive transmission from the user equipment.
Abstract:
A base station including a memory and a processor. The memory is configured to store computer readable instructions. The processor is configured to execute the computer readable instructions such that the memory, the processor and the computer readable instructions cause the base station to order a plurality of reception devices according to an amount of transmission resources required to transmit transmission data to each reception device, assign transmission resources in a time slot in blocks to each of the plurality of reception devices in order from a first reception device requiring the least amount of transmission resources to a reception device among the plurality of reception devices requiring a greatest amount of transmission resources, the time slot being divided into a plurality of symbols, and transmit the transmission data to the plurality of reception devices using the assigned transmission resources.
Abstract:
Methods and apparatuses are provided for hardware acceleration for a frequency domain scheduler. An example method includes receiving an instruction from a processor core to process a job for determining an allocation of a set of resources to one or more users, the set of resources corresponding to a transmission layer in a transmission time interval; processing the job by determining which of the one or more users is to be allocated on each of the respective resources in the set based on a first array stored in a memory associated with a metric of each of one or more users for each of the resources in the set, and a second array stored in the memory associated with a buffer size of each of the one or more users; and in response to successfully completing the job, sending an indication of the determined allocation to the processor core.
Abstract:
As radio access network (RAN) architecture evolves and evolved packet core deployments get more distributed, there is an opportunity to provide significant optimizations of latency and processing. Certain embodiments can provide these and other benefits using vertical aggregation of radio access network and evolved packet core functionalities. A method can include operating a network element as a per-user-equipment control plane entity. The method can also include operating the network element as a first user plane entity (for example, a per-user-equipment user plane entity). The method can further include operating the network element as a second user plane entity. The method can additionally include operating the network element as a per-cell control plane entity. The method can also include operationally interconnecting the per-user-equipment control plane entity, the first user plane entity, the second user plane entity, and the per-cell control plane entity via interfaces.