Abstract:
An apparatus including an input configured to receive at least one notification from at least one radio access network node controller, the at least one notification caused to notify the apparatus of at least one physical channel assignment policy indication; an assigner configured to implement at least one physical channel assignment based on the at least one physical channel assignment policy indication; an output configured to generate and transmit at least one assignment notification to at least one user equipment associated with the apparatus, the assignment notification caused to notify the at least one user equipment of the at least one physical channel assignment.
Abstract:
The present invention addresses method, apparatus and computer program product for dynamic cell clustering for Coordinated Multipoint operation. Clustering metric information defining relevant metrics for making cell clustering decision for Coordinated Multipoint operation are received from a network element serving a neighboring cell, and based on the received clustering metric information, it is decided whether to include the neighboring cell to a cluster for Coordinated Multipoint operation.
Abstract:
A method and apparatus determine a transmission beam for downlink transmissions, and provides first beamforming instructions for forming the transmission beam to a transmission path. The method and apparatus also determine at least one receiving beam that is a first receiving beam, and at least one receiving beam that is a second receiving beam. A first antenna sub-array is configured to provide a first plurality of concurrent receiving beams and a second antenna sub-array is configured to provide a second plurality of concurrent receiving beams, providing second beamforming instructions, for forming at least the first receiving beam and at least the second receiving beams, to a first receiving path and a second receiving path, respectively.
Abstract:
In some embodiments, a computing system maintains, in a memory, information on one or more terminal devices, a dictionary of beams and information on a spatial grid. The computing system maps each terminal device to the spatial grid based on up-to-date results of radio measurements and calculates, for each spatial element, a load caused by the one or more terminal devices based on the mapping. The computing system evaluates, for each combination of a beam and a terminal device, a reference signal received power, RSRP, based on results of the radio measurements. The computing system calculates a first map of expected spatial distribution of traffic based on the calculated loads and beam-specific second maps of expected RSRP based on the values of the RSRP. Finally, the computing system causes performing beamforming optimization based on the first map and second maps.
Abstract:
Methods and apparatus for realizing dynamic point selection improve the cell-edge throughput and geometric mean of release 8/9 UEs. The method comprises a step of receiving estimated channel quality reported by all the TPs in the CoMP set, a step of switching the serving TP for the UEs based on the estimated channel quality and/or cell load, a step of forwarding the scheduled data from the primary TP to the serving TP, a step of separately transmitting PDCCH to the UEs by the primary TP and transmitting PDSCH to the UEs by the serving TP. the implementation of the method and apparatus improves the cell-edge throughput and geometric mean of UE throughput by serving UEs instantaneously from the cell that provides better throughput accounting for fast time-scale channel fluctuations and/or load. It helps in reducing interference due to data getting drained faster when users are served from cells with better channel conditions.
Abstract:
There are provided measures for inter-cell interference coordination in heterogeneous networks. Such measures exemplarily include determining a strongest interfering macro cell access node, said strongest interfering macro cell access node operating in time based subframes, wherein said subframes include almost blank transmission subframes during which said strongest interfering macro cell access node is muted and active transmission subframes during which said strongest interfering macro cell access node is transmitting, reporting said strongest interfering macro cell access node, and receiving a transmission in a subframe, wherein a control parameter of said transmission is set based on whether said subframe corresponds to an almost blank transmission subframe of said strongest interfering macro cell access node or to an active transmission subframe of said strongest interfering macro cell access node.
Abstract:
Apparatuses, methods, and computer-readable media for joint user scheduling and analog beam choice in hybrid beamforming are disclosed. The apparatus comprises a processor and a memory storing instructions that, when executed by the processor, cause the apparatus at least to perform computing a maximum number of physical resource blocks, PRBs, that can be assigned to a specific user using a specific beam out of a plurality of users and a plurality of beams The apparatus can also calculate a maximum value of a first beam proportional fair, PF, metric and the corresponding beam and users The apparatus can also calculate a maximum value of a second beam proportional fair, PF, metric and the corresponding beam and users The apparatus can also select one of the RT-heuristic or Pmax-heuristic, and perform beam and user scheduling based on information regarding the corresponding beam and users according to the selected RT-heuristic or Pmax-heuristic.
Abstract:
Embodiments of the present disclosure relate to compressed channel state information transfer. According to embodiments of the present disclosure, the radio unit at the base station receives signals from the terminal device. The radio unit (RU) compresses the signal based on the weights of beams and transmits the compressed signal to the baseband unit (BBU) at the base station. The baseband unit reconstructs the channel based on the compressed signal and the coefficients. In this way, the amount of information conveyed across the RU-BBU interface is reduced, and the accuracy of channel estimation is improved. Further, the sounding reference signal (SRS) channel can be obtained at the BBU with reduced number of SRS transmissions.
Abstract:
A solution for allocating N radio beam configurations to access nodes including, in some embodiments, a method comprising storing a beam library defining a set of radio beam configurations for a coverage area. A coverage area is divided into sub-areas, and a set of channel quality metrics is collected, as is a traffic density parameter for each sub-area. The following steps are performed: selecting N radio beam configurations from the set of radio beam configurations; mapping each sub-area with one of the selected N radio beam configurations; computing a service performance for the selected N radio beam configurations; the service performance is weighted by the traffic density parameters. The service performance are stored as linked to each radio beam configuration of the selected N radio beam configurations. Based on the stored service performances, a set of N radio beam configurations is selected and the N radio beam configurations are allocated.
Abstract:
An apparatus is disclosed, comprising means for identifying a plurality of user equipment (UE), each transmitting one or more uplink packets for decoding at a base station associated with a given cell of a radio network. The apparatus further comprises means for clustering the identified user equipment into joint processing groups, each joint processing group comprising the identities of two or more user equipment as clustered and means for performing, in a first processing stage, joint processing of the uplink data streams for identified user equipment within common joint processing groups using one or more first processing algorithms to produce corresponding first processed uplink data streams. The apparatus further discloses means for performing one or more subsequent processing stages on the first processed uplink data streams, subsequent to the joint processing, to produce decoded uplink data streams, the one or more subsequent processing stages using one or more second processing algorithms, different from the first processing algorithm.