Intelligent preprocessing of multi-dimensional time-series data

    公开(公告)号:US10740310B2

    公开(公告)日:2020-08-11

    申请号:US15925427

    申请日:2018-03-19

    Abstract: The disclosed embodiments relate to a system that preprocesses sensor data to facilitate prognostic-surveillance operations. During operation, the system obtains training data from sensors in a monitored system during operation of the monitored system, wherein the training data comprises time-series data sampled from signals produced by the sensors. The system also obtains functional requirements for the prognostic-surveillance operations. Next, the system performs the prognostic-surveillance operations on the training data and determines whether the prognostic-surveillance operations meet the functional requirements when tested on non-training data. If the prognostic-surveillance operations do not meet the functional requirements, the system iteratively applies one or more preprocessing operations to the training data in order of increasing computational cost until the functional requirements are met.

    INTELLIGENT PREPROCESSING OF MULTI-DIMENSIONAL TIME-SERIES DATA

    公开(公告)号:US20190286725A1

    公开(公告)日:2019-09-19

    申请号:US15925427

    申请日:2018-03-19

    Abstract: The disclosed embodiments relate to a system that preprocesses sensor data to facilitate prognostic-surveillance operations. During operation, the system obtains training data from sensors in a monitored system during operation of the monitored system, wherein the training data comprises time-series data sampled from signals produced by the sensors. The system also obtains functional requirements for the prognostic-surveillance operations. Next, the system performs the prognostic-surveillance operations on the training data and determines whether the prognostic-surveillance operations meet the functional requirements when tested on non-training data. If the prognostic-surveillance operations do not meet the functional requirements, the system iteratively applies one or more preprocessing operations to the training data in order of increasing computational cost until the functional requirements are met.

    Knowledge-intensive data processing system

    公开(公告)号:US10740358B2

    公开(公告)日:2020-08-11

    申请号:US14665171

    申请日:2015-03-23

    Abstract: Embodiments of the invention provide systems and methods for managing and processing large amounts of complex and high-velocity data by capturing and extracting high-value data from low value data using big data and related technologies. Illustrative database systems described herein may collect and process data while extracting or generating high-value data. The high-value data may be handled by databases providing functions such as multi-temporality, provenance, flashback, and registered queries. In some examples, computing models and system may be implemented to combine knowledge and process management aspects with the near real-time data processing frameworks in a data-driven situation aware computing system.

    PREDICTIVE DIAGNOSIS OF SLA VIOLATIONS IN CLOUD SERVICES BY SEASONAL TRENDING AND FORECASTING WITH THREAD INTENSITY ANALYTICS
    4.
    发明申请
    PREDICTIVE DIAGNOSIS OF SLA VIOLATIONS IN CLOUD SERVICES BY SEASONAL TRENDING AND FORECASTING WITH THREAD INTENSITY ANALYTICS 有权
    通过季节性变化预测云服务中的SLA违规和预测强度分析的预测性诊断

    公开(公告)号:US20170012834A1

    公开(公告)日:2017-01-12

    申请号:US15275035

    申请日:2016-09-23

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Abstract translation: 数据可以分为事实,信息,假设和指令。 通过应用可分类到分类,评估,决议和制定的知识,基于其他类别的数据生成某些类别的数据的活动。 活动可以通过分类评估 - 分配制度(CARE)控制引擎来驱动。 CARE控制和这些分类可用于增强大量系统,例如诊断系统,例如通过历史记录保存,机器学习和自动化。 这样的诊断系统可以包括基于将知识应用于诸如线程或堆栈段强度和内存堆使用的系统生命体征来预测计算系统故障的系统。 这些生命体征是可以分类以产生诸如记忆泄漏,车队效应或其他问题的信息的事实。 分类可以涉及自动生成类,状态,观察,预测,规范,目标以及具有不规则持续时间的采样间隔的处理。

    SEASONAL TRENDING, FORECASTING, ANOMALY DETECTION, AND ENDPOINT PREDICTION OF JAVA HEAP USAGE
    5.
    发明申请
    SEASONAL TRENDING, FORECASTING, ANOMALY DETECTION, AND ENDPOINT PREDICTION OF JAVA HEAP USAGE 审中-公开
    JAVA HEAP使用的季节性变化,预测,异常检测和端点预测

    公开(公告)号:US20150234869A1

    公开(公告)日:2015-08-20

    申请号:US14705304

    申请日:2015-05-06

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Abstract translation: 数据可以分为事实,信息,假设和指令。 通过应用可分类到分类,评估,决议和制定的知识,基于其他类别的数据生成某些类别的数据的活动。 活动可以通过分类评估 - 分配制度(CARE)控制引擎来驱动。 CARE控制和这些分类可用于增强大量系统,例如诊断系统,例如通过历史记录保存,机器学习和自动化。 这样的诊断系统可以包括基于将知识应用于诸如线程或堆栈段强度和内存堆使用的系统生命体征来预测计算系统故障的系统。 这些生命体征是可以分类以产生诸如记忆泄漏,车队效应或其他问题的信息的事实。 分类可以涉及自动生成类,状态,观察,预测,规范,目标以及具有不规则持续时间的采样间隔的处理。

    KNOWLEDGE INTENSIVE DATA MANAGEMENT SYSTEM FOR BUSINESS PROCESS AND CASE MANAGEMENT
    6.
    发明申请
    KNOWLEDGE INTENSIVE DATA MANAGEMENT SYSTEM FOR BUSINESS PROCESS AND CASE MANAGEMENT 有权
    了解企业流程和案例管理的强化数据管理系统

    公开(公告)号:US20140310285A1

    公开(公告)日:2014-10-16

    申请号:US14109651

    申请日:2013-12-17

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Abstract translation: 数据可以分为事实,信息,假设和指令。 通过应用可分类到分类,评估,决议和制定的知识,基于其他类别的数据生成某些类别的数据的活动。 活动可以通过分类评估 - 分配制度(CARE)控制引擎来驱动。 CARE控制和这些分类可用于增强大量系统,例如诊断系统,例如通过历史记录保存,机器学习和自动化。 这样的诊断系统可以包括基于将知识应用于诸如线程或堆栈段强度和内存堆使用的系统生命体征来预测计算系统故障的系统。 这些生命体征是可以分类以产生诸如记忆泄漏,车队效应或其他问题的信息的事实。 分类可以涉及自动生成类,状态,观察,预测,规范,目标以及具有不规则持续时间的采样间隔的处理。

    Knowledge-intensive data processing system

    公开(公告)号:US11468098B2

    公开(公告)日:2022-10-11

    申请号:US16917468

    申请日:2020-06-30

    Abstract: Embodiments of the invention provide systems and methods for managing and processing large amounts of complex and high-velocity data by capturing and extracting high-value data from low value data using big data and related technologies. Illustrative database systems described herein may collect and process data while extracting or generating high-value data. The high-value data may be handled by databases providing functions such as multi-temporality, provenance, flashback, and registered queries. In some examples, computing models and system may be implemented to combine knowledge and process management aspects with the near real-time data processing frameworks in a data-driven situation aware computing system.

    Seasonal trending, forecasting, anomaly detection, and endpoint prediction of thread intensity statistics

    公开(公告)号:US10333798B2

    公开(公告)日:2019-06-25

    申请号:US14705304

    申请日:2015-05-06

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Predictive diagnosis of SLA violations in cloud services by seasonal trending and forecasting with thread intensity analytics
    9.
    发明授权
    Predictive diagnosis of SLA violations in cloud services by seasonal trending and forecasting with thread intensity analytics 有权
    通过线性强度分析,通过季节性趋势和预测,预测SLA违规云服务

    公开(公告)号:US09495395B2

    公开(公告)日:2016-11-15

    申请号:US14109578

    申请日:2013-12-17

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Abstract translation: 数据可以分为事实,信息,假设和指令。 通过应用可分类到分类,评估,决议和制定的知识,基于其他类别的数据生成某些类别的数据的活动。 活动可以通过分类评估 - 分配制度(CARE)控制引擎来驱动。 CARE控制和这些分类可用于增强大量系统,例如诊断系统,例如通过历史记录保存,机器学习和自动化。 这样的诊断系统可以包括基于将知识应用于诸如线程或堆栈段强度和内存堆使用的系统生命体征来预测计算系统故障的系统。 这些生命体征是可以分类以产生诸如记忆泄漏,车队效应或其他问题的信息的事实。 分类可以涉及自动生成类,状态,观察,预测,规范,目标以及具有不规则持续时间的采样间隔的处理。

    Knowledge intensive data management system for business process and case management
    10.
    发明授权
    Knowledge intensive data management system for business process and case management 有权
    知识密集型数据管理系统,用于业务流程和案例管理

    公开(公告)号:US09330119B2

    公开(公告)日:2016-05-03

    申请号:US14109651

    申请日:2013-12-17

    Abstract: Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.

    Abstract translation: 数据可以分为事实,信息,假设和指令。 通过应用可分类到分类,评估,决议和制定的知识,基于其他类别的数据生成某些类别的数据的活动。 活动可以通过分类评估 - 分配制度(CARE)控制引擎来驱动。 CARE控制和这些分类可用于增强大量系统,例如诊断系统,例如通过历史记录保存,机器学习和自动化。 这样的诊断系统可以包括基于将知识应用于诸如线程或堆栈段强度和内存堆使用的系统生命体征来预测计算系统故障的系统。 这些生命体征是可以分类以产生诸如记忆泄漏,车队效应或其他问题的信息的事实。 分类可以涉及自动生成类,状态,观察,预测,规范,目标以及具有不规则持续时间的采样间隔的处理。

Patent Agency Ranking