Abstract:
The disclosed embodiments relate to a system that preprocesses sensor data to facilitate prognostic-surveillance operations. During operation, the system obtains training data from sensors in a monitored system during operation of the monitored system, wherein the training data comprises time-series data sampled from signals produced by the sensors. The system also obtains functional requirements for the prognostic-surveillance operations. Next, the system performs the prognostic-surveillance operations on the training data and determines whether the prognostic-surveillance operations meet the functional requirements when tested on non-training data. If the prognostic-surveillance operations do not meet the functional requirements, the system iteratively applies one or more preprocessing operations to the training data in order of increasing computational cost until the functional requirements are met.
Abstract:
The disclosed embodiments relate to a system that preprocesses sensor data to facilitate prognostic-surveillance operations. During operation, the system obtains training data from sensors in a monitored system during operation of the monitored system, wherein the training data comprises time-series data sampled from signals produced by the sensors. The system also obtains functional requirements for the prognostic-surveillance operations. Next, the system performs the prognostic-surveillance operations on the training data and determines whether the prognostic-surveillance operations meet the functional requirements when tested on non-training data. If the prognostic-surveillance operations do not meet the functional requirements, the system iteratively applies one or more preprocessing operations to the training data in order of increasing computational cost until the functional requirements are met.
Abstract:
Embodiments of the invention provide systems and methods for managing and processing large amounts of complex and high-velocity data by capturing and extracting high-value data from low value data using big data and related technologies. Illustrative database systems described herein may collect and process data while extracting or generating high-value data. The high-value data may be handled by databases providing functions such as multi-temporality, provenance, flashback, and registered queries. In some examples, computing models and system may be implemented to combine knowledge and process management aspects with the near real-time data processing frameworks in a data-driven situation aware computing system.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Embodiments of the invention provide systems and methods for managing and processing large amounts of complex and high-velocity data by capturing and extracting high-value data from low value data using big data and related technologies. Illustrative database systems described herein may collect and process data while extracting or generating high-value data. The high-value data may be handled by databases providing functions such as multi-temporality, provenance, flashback, and registered queries. In some examples, computing models and system may be implemented to combine knowledge and process management aspects with the near real-time data processing frameworks in a data-driven situation aware computing system.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.