Abstract:
An anomaly detection and resolution system (ADRS) is disclosed for automatically detecting and resolving anomalies in computing environments. The ADRS may be implemented using an anomaly classification system defining different types of anomalies (e.g., a defined anomaly and an undefined anomaly). A defined anomaly may be based on bounds (fixed or seasonal) on any metric to be monitored. An anomaly detection and resolution component (ADRC) may be implemented in each component defining a service in a computing system. An ADRC may be configured to detect and attempt to resolve an anomaly locally. If the anomaly event for an anomaly can be resolved in the component, the ADRC may communicate the anomaly event to an ADRC of a parent component, if one exists. Each ADRC in a component may be configured to locally handle specific types of anomalies to reduce communication time and resource usage for resolving anomalies.
Abstract:
An anomaly detection and resolution system (ADRS) is disclosed for automatically detecting and resolving anomalies in computing environments. The ADRS may be implemented using an anomaly classification system defining different types of anomalies (e.g., a defined anomaly and an undefined anomaly). A defined anomaly may be based on bounds (fixed or seasonal) on any metric to be monitored. An anomaly detection and resolution component (ADRC) may be implemented in each component defining a service in a computing system. An ADRC may be configured to detect and attempt to resolve an anomaly locally. If the anomaly event for an anomaly can be resolved in the component, the ADRC may communicate the anomaly event to an ADRC of a parent component, if one exists. Each ADRC in a component may be configured to locally handle specific types of anomalies to reduce communication time and resource usage for resolving anomalies.
Abstract:
An anomaly detection and resolution system (ADRS) is disclosed for automatically detecting and resolving anomalies in computing environments. The ADRS may be implemented using an anomaly classification system defining different types of anomalies (e.g., a defined anomaly and an undefined anomaly). A defined anomaly may be based on bounds (fixed or seasonal) on any metric to be monitored. An anomaly detection and resolution component (ADRC) may be implemented in each component defining a service in a computing system. An ADRC may be configured to detect and attempt to resolve an anomaly locally. If the anomaly event for an anomaly can be resolved in the component, the ADRC may communicate the anomaly event to an ADRC of a parent component, if one exists. Each ADRC in a component may be configured to locally handle specific types of anomalies to reduce communication time and resource usage for resolving anomalies.
Abstract:
Systems, methods, and other embodiments that manage load in request processing environments are described. In one embodiment, a method includes receiving, at a backend of a request processing environment, requests transmitted by frontends. The backend is controlled to process the requests to create responses that are transmitted back to the frontends. Load of the backend processing the requests is monitored. In response to the load exceeding a threshold, a retry interval is calculated as a function of the load. In response to receiving a subsequent request from a frontend, a command is transmitted to the frontend. The command modifies operation of the frontend to wait the retry interval before re-transmitting the subsequent request as a retry request and to avoid generating an error message.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
Data can be categorized into facts, information, hypothesis, and directives. Activities that generate certain categories of data based on other categories of data through the application of knowledge which can be categorized into classifications, assessments, resolutions, and enactments. Activities can be driven by a Classification-Assessment-Resolution-Enactment (CARE) control engine. The CARE control and these categorizations can be used to enhance a multitude of systems, for example diagnostic system, such as through historical record keeping, machine learning, and automation. Such a diagnostic system can include a system that forecasts computing system failures based on the application of knowledge to system vital signs such as thread or stack segment intensity and memory heap usage. These vital signs are facts that can be classified to produce information such as memory leaks, convoy effects, or other problems. Classification can involve the automatic generation of classes, states, observations, predictions, norms, objectives, and the processing of sample intervals having irregular durations.
Abstract:
An anomaly detection and resolution system (ADRS) is disclosed for automatically detecting and resolving anomalies in computing environments. The ADRS may be implemented using an anomaly classification system defining different types of anomalies (e.g., a defined anomaly and an undefined anomaly). A defined anomaly may be based on bounds (fixed or seasonal) on any metric to be monitored. An anomaly detection and resolution component (ADRC) may be implemented in each component defining a service in a computing system. An ADRC may be configured to detect and attempt to resolve an anomaly locally. If the anomaly event for an anomaly can be resolved in the component, the ADRC may communicate the anomaly event to an ADRC of a parent component, if one exists. Each ADRC in a component may be configured to locally handle specific types of anomalies to reduce communication time and resource usage for resolving anomalies.