摘要:
An apparatus and a process for mass production of films by vacuum deposition comprise a substrate charging stage which is evacuated, an interconnecting stage which is positioned adjacent to said substrate charging stage and is evacuated, and a film forming stage which is removably attached to the interconnecting stage and is evacuated independently of the interconnecting stage.
摘要:
A vacuum processing apparatus for applying a vacuum working process to a substrate to be processed by a plurality of processing steps comprises vacuum containers exclusively for use for processing disposed in place for each of the processing steps, and a vacuum container exclusively for use for conveyance movable between the vacuum containers exclusively for use for processing. The vacuum containers are provided with opening-closing gates which can be connected to each other. The substrate to be processed is transferably movable between the vacuum containers exclusively for use for processing and the vacuum container exclusively for use for conveyance.
摘要:
There is provided a light receiving member which comprises a support, a photosensitive layer composed of amorphous material containing silicon atoms and at least either germanium atoms or tin atoms and a surface layer, said surface layer being of multi-layered structure having at least an abrasion-resistant layer at the outermost side and a reflection preventive layer in the inside, and said support having a surface provided with irregularities composed of spherical dimples each of which having an inside face provided with minute irregularities. The light receiving member overcomes all of the problems in the conventional light receiving member comprising a light receiving layer composed of an amorphous silicon and, in particular, effectively prevents the occurrence of interference fringe in the formed images due to the interference phenomenon thereby forming visible images of excellent quality even in the case of using coherent laser beams possible producing interference as a light source.
摘要:
A light-receiving member comprises a substrate having a large number of protruding portions on a surface thereof, each of said protruding portions having at a predetermined cut position a sectional shape comprising a main projection and a subprojection, the main projection and the subprojection overlapping each other, and a light-receiving layer of a multi-layer structure having a first layer comprising an amorphous material containing silicon atoms and germanium atoms, a second layer comprising an amorphous material containing silicon atoms and exhibiting photoconductivity and a surface layer having reflection preventive function provided on the substrate successively from the substrate side.
摘要:
A light-receiving member comprises a substrate having a large number of protruding portions on a surface thereof, each of said protruding portions having at a predetermined cut position a sectional shape comprising a main projection and a subprojection, the main projection and the subprojection overlapping each other, and a light-receiving layer comprising a layer comprising an amorphous material containing silicon atoms, at least a part of the layer region of which has photosensitivity and a surface layer comprising an amorphous material containing silicon atoms and carbon atoms.
摘要:
A light-receiving member comprises a substrate having a large number of projection parts, whose cross-sectional shape at a given cross-sectional position is a projection shape formed of a main peak and an auxiliary peak as overlapped, on the surface of the substrate, and a light-receiving layer comprising a layer containing an amorphous material including silicon atoms, at least one part of the layer region of the layer being photosensitive, and a surface layer having a reflection-preventive function.An electrophotographic system comprises the above-mentioned light-receiving member.
摘要:
A light receiving member comprises a light receiving layer of a multi-layer structure having a first layer comprising an amorphous material containing silicon atoms and germanium atoms, a second layer comprising an amorphous material containing silicon atoms and exhibiting photoconductivity and a surface layer having reflection preventive function provided on a substrate successively from the substrate side, said light receiving layer containing at least one selected from oxygen atoms, carbon atoms and nitrogen atoms and having at least one pair of non-parallel interfaces within a short range and said non-parallel interfaces being arranged in a large number in at least one direction within the plane perpendicular to the layer thickness direction.
摘要:
A process for producing a photoconductive member, which comprises forming a photoconductive layer on a substrate for formation of a photoconductive layer by introducing starting substances for formation of a photoconductive layer under gaseous state into a deposition chamber maintained under a desired reduced pressure and exciting discharging under the gas atmosphere of said starting substances is characterized in that said starting substances are constituted of at least one substance selected from the first group consisting of substances(O) containing oxygen atoms as constituent atom, substances(N) containing nitrogen atoms as constituent atom and substances(C) containing carbon atoms as constituent atom, and at least two compounds selected from the second group consisting of the compounds of the formula:Si.sub.n H.sub.2n+2 (A)wherein n is a positive integer and the compounds of the formula:Si.sub.m H.sub.l X.sub.k (B)wherein m and k are positive integers, l is 0 or a positive integer, l+k=2m+2, and X represents a halogen atom, n and m being called "order number" hereinafter, and said at least two compounds selected from the second group consisting of the compounds represented by the formulas (A) and (B) to be introduced into said deposition chamber being controlled in amounts such that the proportion of the total of high order compounds is at least 1 vol. % based on the total of the minimum order compounds, the minimum order compound being one whose order number is the minimum among order numbers of said at least two compounds, the high order compound being one whose order number is higher than the order number of the minimum order compound.
摘要:
A light receiving member has a support and a light receiving layer. The support has an uneven-shaped surface of a plurality of spherical dimples, each dimple having an identical radius of curvature R and an identical width D, wherein the ratio D/R of the width D to the radius of curvature R is from 0.03 to 0.07. The light receiving layer is a multi-layered structure having an outer layer which formed from an amorphous material containing silicon atoms as the main constituent and at least one of hydrogen atoms and halogen atoms. The light receiving layer contains an inner layer of amorphous silicon which also contains germanium and/or tin and hydrogen and/or halogen.The light receiving member, when used with a coherent laser beam as an optical source, acts to prevent the occurrence of an interference fringe pattern during image formation.
摘要:
A light receiving member comprises a support and a light receiving layer of a multi-layered structure having at least a photosensitive layer composed of an amorphous silicon, said support having a surface provided with irregularities composed of spherical dimples each of which having an inside face provided with minute irregularities. The light receiving layer may contain a surface layer comprising an outer abrasion-resistant layer and an inner reflection prevention layer, wherein the optical band gap possessed by the surface layer and optical band gap possessed by the photosensitive layer on which the surface layer is disposed are matched at their interface. The light receiving member can effectively prevent the occurrence of interference fringes in the formed images, forming visible images of excellent quality even when coherent laser beams are used as the light source. The member can also effectively prevent reflection of incident light at the interface between the surface layer and the photosensitive layer.