Abstract:
A fluorescent probe compound, a preparation method thereof, and a method of imaging and quantifying lysosomal adenosine triphosphate (ATP) at a cell or tissue level through one-photon or two-photon fluorescence microscopy using the compound is disclosed. A fluorescence detection system capable of detecting lysosomal ATP is further disclosed. Since the fluorescent probe compound is found to be capable of selectively sensing and quantifying lysosomal ATP in a cell or tissue, it is expected that the disclosed compound or composition can be usefully employed in the study of various biological reactions or diseases associated with ATP in a living body.
Abstract:
Provided are acedan derivatives having an extended π bond, a method for preparing the acedan derivatives, and a method for two-photon microscopy imaging of amyloid-beta plaque using the acedan derivatives; more particularly, to two-photon absorbing fluorescent compounds having a longer absorption wavelength and emission wavelength than acedan and acedan derivatives which are conventional two-photon absorbing fluorophores. The compounds provided may be usefully used for in vivo imaging studies by imaging cells or tissue using the compounds, and may also be usefully used for diagnosing Alzheimer's disease by imaging amyloid-beta plaque using the compounds.
Abstract:
The present invention relates to a silicon-substituted amino-pyronin compound derivative, a cell- or tissue-imaging method using the same, a cancer diagnosis method using the same, and a method for preparation of the same. More specifically, serving as a two-photon absorption fluorescent substance which has longer absorption and emission wavelengths in red or near-infrared regions of 625 nm or greater, compared to conventional one-photon absorption fluorescent substances, the silicon-substituted amino-pyronin compound derivative can minimize the influence of self-fluorescence in a bioimaging study and is thus expected to be suitable for high-resolution imaging in deep tissues. A fluorescent probe developed on the basis of the fluorescent substance platform is expected to find an expanded range of applications in analyzing and imaging specific materials in vivo.
Abstract:
The present invention relates to new one-photon or two-photon absorbing fluorophores, a method for preparing the same, and a method for cellular imaging using the same, and more particularly, to new two-photon absorbing fluorophores having higher fluorescence quantum yield and two-photon absorption cross-section value than those of the conventional two-photon absorbing fluorophore, acedan, and thus are promisingly applicable in bioimaging. The design strategy and the compounds according to the present invention may practically utilized for developing new D-π-A fluorophores.
Abstract:
A fluorescent probe for detecting a tyrosine kinase using a compound having an ortho-hydroxy-benzaldehyde structure, and use thereof are provided. The fluorescent probe can show a change in fluorescence when the compound binds with a tyrosine kinase. The compound can be readily synthesized and has high stability and low cytotoxicity in vivo. The fluorescent probe can be used to image cells or tissues overexpressing the tyrosine kinase, the fluorescent probe can be effectively used in a composition for imaging the tissues and a method of imaging the tissues. Also, the fluorescent probe can be used to image cancer cells or tissues since the fluorescent probe can exhibit fluorescence when the fluorescent probe binds to the cancer cells or tissues overexpressing the tyrosine kinase.