Abstract:
A gaseous process for reducing the amount of chloropentafluoroethane (CFC 115) impurity present in pentafluoroethane (HFC 125) characterized in that pentafluroethane is allowed to flow on a catalyst formed by a trivalent chromium salt, optionally supported, at temperatures in the range 200° C.-400° C., obtaining the reaction of chloropentafluoroethane with pentafluoroethane with formation of hexafluoroethane (FC 116) and tetrafluorochloroethane (HCFC 124).
Abstract:
A gaseous process for obtaining pentafluoroethane by dismutation of chlorotetrafluoroethane in the presence of a supported catalyst, said catalyst being formed of a mixture of trivalent chromium oxide with at least an alkaline-earth metal oxide selected from Mg, Ca, Sr and Ba.
Abstract:
Process for the regeneration of a fluorination catalyst based on Cr(III) compounds optionallay supported comprising a) the treatment at 350.degree. C.-400.degree. C. with an air/inert gas mixture and b) treatment at 300.degree. C.-380.degree. C. with a mixture of an inert gas containing from 1 to 10% by volume of hydrogen.
Abstract:
1,1,1,2-tetrafluoroethane (134a) is prepared by reacting, in the gas phase, trichloroethylene with 1,1,1-trifluorochloroethane (133a) and hydrofluoric acid with trichloroethylene/133a molar ratios ranging from 5/95 to 50/50, in the presence of a catalyst consisting of Cr.sub.2 O.sub.3 carried on AlF.sub.3.The process provides 134a yields higher than 90% and permits an exceptionally long life of the catalyst. In this way it is possible to realize a continuous process by recycling the unreacted trichloroethylene and 133a, thereby making up for the relatively low global conversion of the reagents.
Abstract:
The 1,1,2-trifluoro-1,2-dichloroethane content is reduced or removed from 1,1,1-trifluoro-2,2-dichloroethane by contacting a gaseous mixture comprising said compounds with chrome oxide (Cr.sub.2 O.sub.3) either as such or supported, at temperatures from 180.degree. to 400.degree. C.
Abstract translation:通过使包含所述化合物的气体混合物与氧化铬(Cr 2 O 3)接触,将1,1,2-三氟-1,2-二氯乙烷含量从1,1,1-三氟-2,2-二氯乙烷中还原或除去 或在180°至400℃的温度下负载
Abstract:
A process for obtaining pentafluoroethane HFC 125 by dismutation of gaseous tetrafluorochloroethane HCFC 124, at temperatures in the range 200°-300° C., on a trivalent chromium oxide (Cr2O3) catalyst, supported on aluminum fluoride, by feeding HF in such amount that the HCFC 124/HF molar ratio is in the range 10/1-1/1.
Abstract:
Process for preparing pentafluoroethane (HFC-125) wherein 1,1,1-trifluorodichloroethane (HFC-123) is reacted with HF at a temperature from 310° to 380° C., in the presence of a catalyst comprising Cr2O3 supported on preformed AlF3. HFC-125 is obtained with high yields (up to 60-70% and over), high conversions (over 80%) and high selectivity, i.e. formation of by-product in very low amounts (5% by moles at most) Moreover, the catalyst maintains a high activity for a long time also with high organic charges.
Abstract translation:制备五氟乙烷(HFC-125)的方法,其中1,1,1-三氟二氯乙烷(HFC-123)与HF在310℃至380℃的温度下,在载有预先形成的AlF 3的Cr 2 O 3 。 以高产率(高达60-70%及以上),高转化率(超过80%)和高选择性获得HFC-125,即以非常低的量(最多5摩尔%)形成副产物。此外, 催化剂长时间保持高活性,同时也具有高有机电荷。
Abstract:
Perfluoropropene (PFP) hydrofluorination process in gaseous phase to obtain CF3—CHF—CF3 (A-227ea), characterized in that as catalyst fluorinated alumina containing at least 90% by weight of AlF3, is used, the HF/PFP molar ratios range from about 4:1 to 20:1, the hydrofluorination process temperature being in the range 320°-420° C.
Abstract:
A fluorination catalyst based on of an amorphous Cr (III) compound and on a compound of another metal selected from Mg, Ca, Sr, Ba, Sc, Ti and Zr, wherein the atomic ratio of Cr/other metal is between 50:1 and 1:1, said compounds are supported on a AlF.sub.3 support and being prepared by impregnating the support with a concentrated aqueous solution containing a soluble Cr (III) salt and a soluble salt of the other metal. The catalyst can be used in gaseous phase reactions.
Abstract:
1,1,1,2-tetrafluoroethane (134a) is prepared by reacting, in the gas phase, trichloroethylene with 1,1,1-trifluorochloroethane (133a) and hydrofluoric acid with trichloroethylene/133a molar ratios ranging from 5/95 to 50/50, in the presence of a catalyst consisting of Cr.sub.2 O.sub.3 carried on AlF.sub.3.The process provides 134a yields higher than 90% and permits an exceptionally long life of the catalyst. In this way it is possible to realize a continuous process by recycling the unreacted trichloroethylene and 133a, thereby making up for the relatively low global conversion of the reagents.