Abstract:
Disclosed in the present disclosure is a method for preparing 2,3,3,3-tetrafluoropropene. The method includes a two-step method for preparing 2,3,3,3-tetrafluoropropene, a method for co-producing 2,3,3,3-tetrafluoropropene and 1-chloro-2,3,3,3-tetrafluoropropene, and a method for co-producing 2,3,3,3-tetrafluoropropene and 1-chloro-3,3,3-trifluoropropene. The two-step method for preparing 2,3,3,3-tetrafluoropropene includes: A1, a telomerization step: subjecting chlorofluoromethane and trifluoroethylene to a pressure telomerization reaction under the action of a telomerization catalyst to prepare 3-chloro-1,1,1,2-tetrafluoropropane, wherein the telomerization catalyst is a Lewis acid catalyst or a mixed catalyst of a Lewis acid catalyst and dichloromethane; and A2, a dehydrochlorination step: subjecting the 3-chloro-1,1,1,2-tetrafluoropropane to dehydrochlorination under the catalytic action of activated carbon to obtain 2,3,3,3-tetrafluoropropene. The method for preparing 2,3,3,3-tetrafluoropropene has the advantages of a simple process, high product selectivity, mild reaction conditions and the like.
Abstract:
Disclosed is a catalyst for preparing 2,3,3,3-tetrafluoropropene by gas-phase hydrodechlorination, which solves the problem of the high costs and easy deactivation of traditional chlorofluorocarbon hydrodechlorination catalysts. The disclosed catalyst is characterized in consisting of an active component and a carrier, wherein the active component is a combination of one or more of the metals: Ni, Mo, W, Co, Cr, Cu, Ce, La, Mn and Fe. The catalyst in the present invention has excellent performance, high activity, good stability and a low reaction temperature, effectively reduces reaction energy consumption, and has industrial application value.
Abstract:
Described herein is a base oil synthesis via ionic catalyst oligomerization further utilizing a hydrophobic process for removing an ionic catalyst from a reaction mixture with a silica gel composition, specifically a reaction mixture comprising an oligomerization reaction to produce PAO utilizing an ionic catalyst wherein the ionic catalyst is removed post reaction.
Abstract:
The present invention relates to a fluorination process, comprising: an activation stage comprising contacting a fluorination catalyst with to an oxidizing agent-containing gas flow for at least one hour; and at least one reaction stage comprising reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of the fluorination catalyst, so as to produce a fluorinated compound.
Abstract:
The present invention provides a process of catalytic fluorination in gas phase of product 1,1,1,2,3-pentachloropropane or/and 1,1,2,2,3-pentachloropropane into product 2,3,3,3-tetrafluoropropene in presence of a catalyst.
Abstract:
The invention relates to a fluorination process, alternately comprising reaction stages and regeneration stages, wherein the reaction stages comprise reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of a fluorination catalyst to produce a fluorinated compound, and the regeneration stages comprise contacting the fluorination catalyst with an oxidizing agent-containing gas flow.
Abstract:
The invention relates to a fluorination process, alternately comprising reaction stages and regeneration stages, wherein the reaction stages comprise reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of a fluorination catalyst to produce a fluorinated compound, and the regeneration stages comprise contacting the fluorination catalyst with an oxidizing agent-containing gas flow.
Abstract:
The present invention relates to a fluorination process, comprising: an activation stage comprising contacting a fluorination catalyst with an oxidizing agent-containing gas flow for at least one hour; and at least one reaction stage comprising reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of the fluorination catalyst, so as to produce a fluorinated compound.
Abstract:
The present invention relates to a fluorination process, comprising: an activation stage comprising contacting a fluorination catalyst with an oxidizing agent-containing gas flow for at least one hour; and at least one reaction stage comprising reacting a chlorinated compound with hydrogen fluoride in gas phase in the presence of the fluorination catalyst, so as to produce a fluorinated compound.
Abstract:
A rare earth free, ultra low soda, particulate fluid catalytic cracking catalyst which comprises a reduced soda zeolite having fluid catalytic cracking ability under fluid catalytic cracking conditions, a magnesium salt, an inorganic binder, clay and optionally, a matrix material. The catalytic cracking catalyst is useful in a fluid catalytic cracking process to provide increased catalytic activity, and improved coke and hydrogen selectivity without the need to incorporate rare earth metals.