Abstract:
A compression molding apparatus includes a mold of a first material having a first coefficient of thermal expansion and a plug of a second material having a second coefficient of thermal expansion different from the first coefficient of thermal expansion. The mold has a cavity into which the plug is placed such that the mold and plug are disposed relative to one another providing a gap therebetween having a first volume for holding a body that at least partially fills the gap when the mold and plug are at a first temperature and for molding the body into a molded product when the mold and plug are subjected to a second temperature that causes one of the first and second materials of the mold and plug to change in size more than the other and thereby change the gap to a second volume different from the first volume and compress the body.
Abstract:
A dehumidifier for an x-ray detector includes a box having an inlet, an outlet, and a drain. A thermo-electrical element includes a cold plate disposed inside the box for cooling air channeled therethrough, and an opposite hot plate disposed outside the box for liberating heat. Air is cooled inside the box for condensing moisture therefrom which is removed by the drain, and the cooled air is heated for reducing relative humidity thereof. The resulting dry air is channeled to a housing protecting the x-ray detector.
Abstract:
A permanent magnet assembly for an imaging apparatus having a permanent magnet body having a first surface and a stepped second surface which is adapted to face an imaging volume of the imaging apparatus, wherein the stepped second surface contains at least four steps.
Abstract:
An imaging apparatus, such as an MRI system, contains at least one layer of soft magnetic material between the yoke and each permanent magnet. This imaging apparatus may be operated without pole pieces due to the presence of the soft magnetic material. The permanent magnets may be fabricated by magnetizing unmagnetized alloy bodies after the unmagnetized alloy bodies have been attached to the yoke.
Abstract:
A low eddy current cryogen circuit for superconducting magnets including at least a first cooling coil made of an electrically conducting material and having at least one electrical isolator incorporated in the first cooling coil. The electrical isolator is located to inhibit induced eddy current loops due to inductive coupling of the first cooling coil with eddy current inducing field sources.
Abstract:
An imaging apparatus, such as an MRI system, contains at least one layer of soft magnetic material between the yoke and each permanent magnet. This imaging apparatus may be operated without pole pieces due to the presence of the soft magnetic material. The permanent magnets may be fabricated by magnetizing unmagnetized alloy bodies after the unmagnetized alloy bodies have been attached to the yoke.
Abstract:
An imaging apparatus, such as an MRI system, contains at least one layer of soft magnetic material between the yoke and each permanent magnet. This imaging apparatus may be operated without pole pieces due to the presence of the soft magnetic material. The permanent magnets may be fabricated by magnetizing unmagnetized alloy bodies after the unmagnetized alloy bodies have been attached to the yoke.
Abstract:
A magnet, such as an open or closed magnet, has a first assembly with at least one superconductive main coil and with a first vacuum enclosure enclosing the main coil(s). A first cryocooler coldhead has a rigid first housing and is generally vertically aligned. A first flexible bellows is vertically aligned, has a first end attached to the first housing of the first cryocooler coldhead and has a second end attached to the first vacuum enclosure of the first assembly.
Abstract:
A magnetizing coil unit and a method of making a magnetizing coil unit is provided. The coil includes a solenoid coil having a coiled copper sheet in which the width of the copper sheet is equal to the height of the solenoid coil. A magnetizing assembly includes a plurality of magnetizing coil units.
Abstract:
Method for joining wires using low resistivity joints is provided. More specifically, methods of joining one or more wires having superconductive filaments, such as magnesium diboride filaments, are provided. The wires are joined by a low resistivity joint to form wires of a desired length for applications, such in medical imaging applications.