Abstract:
Systems and methods are disclosed for improved processor hang detection. An exemplary method comprises setting a timer with a hang threshold value for each of a plurality of processors of a system on a chip (SoC). The hang threshold value represents a time in microseconds. The method further comprising receiving a first heartbeat signal from each of the plurality of processors with detection logic hardware of a hang controller coupled to the plurality of processors and to the timer. The timer is reset for each of the plurality of processors if a second heartbeat signal is received from the corresponding one of the plurality of processors before the timer expires. Alternatively, a hang event notification is generated if the second heartbeat signal is not received from the corresponding one of the plurality of processors before the timer expires.
Abstract:
Various embodiments of methods and systems for hardware-based memory power management (“HMPM”) in a portable computing device (“PCD”) running secure and non-secure execution environments are disclosed. Hardware-based state machines are uniquely associated with, and under the control of, the non-secure execution environment, the secure execution environment and a virtual manager, respectively. The states of the state machines constitute votes by each of the execution environments and the virtual manager to control the power supply state to the memory component, such as a cache memory. The votes are monitored by a digital circuit that, based on a combination logic of the votes, generates an output signal to trigger a power management component to maintain, supply or remove power on a rail associated with the memory component. In this way, the power supply state to the memory component cannot be unilaterally changed by an application running in the non-secure execution environment.