Abstract:
Methods, systems, and devices for wireless communications are described. A UE may transmit a capability message to a base station. The capability message may indicate a capability of the UE to monitor a defined number of resources across a set of component carriers (CCs) within a time period. The resources may be channel measurement resources (CMRs) or interference measurement resources (IMRs) for signal to interference plus noise measurement, reference signal (RS) resources for channel state information (CSI) measurement, beam failure detection (BFD), reference signal receive power (RSRP) measurement, link quality monitoring, or different active beams. Based on the capability of the UE, the base station may transmit a monitoring configuration to the UE that indicates a set of resources or active beams for the UE to monitor in the set of CCs. The UE may monitor the defined resources or beams received in the monitoring configuration from the base station.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may transmit a communication that identifies one or more UE capability parameters for at least one of sounding reference signal reference signal received power measurement or cross-link interference (CLI) received signal strength indication measurement. The UE may receive a CLI measurement configuration that is based at least in part on the one or more UE capability parameters. Numerous other aspects are provided.
Abstract:
A user equipment (UE) may utilize frequency domain (FD) compression for reporting channel state information (CSI) including a precoding matrix indicator (PMI). The UE may receive a CSI configuration specifying a first set of configured FD units to be reported. The UE may determine a first number of FD units based on the first set of configured FD units. The UE may select a second number of FD units that is greater than or equal to the first number of FD units. The UE may calculate, for one or more layers, a PMI for a second set of FD units including a number of FD units equal to the second number of FD units. The UE may allocate, according to a mapping rule, a number of PMIs for the first set of FD units to a subset of the PMIs for the second set of FD units.
Abstract:
Certain aspects of the present disclosure provide techniques for determining an energy per resource element (EPRE) ratio for non-zero power (NZP) channel state information reference signals (CSI-RSs) when a device is measuring a wireless channel. A method that may be performed by a user equipment (UE) includes determining, based on an indication, an energy per resource element (EPRE) ratio for a non-zero power (NZP) channel state information reference signal (CSI-RS) resource; and measuring a channel based on the determined EPRE ratio and CSI-RSs associated with the NZP CSI-RS resource.
Abstract:
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for measuring, filtering, and reporting cross-link interference (CLI) in cases where not all aggressor user equipments (UEs) are transmitting signals that can be measured by a victim UE. A UE may obtain a set of CLI measurements by performing CLI measurements during a set of CLI measurement occasions. The UE may determine a first subset of the set of CLI measurements that satisfy a CLI measurement threshold and a second subset of the set of CLI measurements that do not satisfy the CLI measurement threshold. The UE may apply a filter to the first subset of the set of CLI measurements, and suppress the filter for the second subset of the set of CLI measurements, to obtain a filtered CLI measurement value. The UE may transmit the filtered CLI measurement value to a base station.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with dynamic selection of a UE receiver. In one example, a communications device is equipped to obtain one or more channel impulse response (CIR) estimates, generate a delay spread metric value that characterizes a multipath delay spread of a channel based on the obtained one or more CIR estimates, and select a receiver option with a first power consumption value, for use by the UE, from a plurality receiver options with different optimal power consumption values, based on the generated delay spread metric value. In an aspect, a comparatively more complex receiver option may be selected when the channel is rich in multipath. In another aspect, a comparatively less complex receiver option may be selected when the channel exhibits flat fading.
Abstract:
Methods, systems, and devices for wireless communication are described. A first user equipment (UE) may receive a control message that triggers reception of CLI reference signals for CLI measurements. The first UE may adjust a reception timing of the first UE for the CLI measurements. The first UE may adjust the reception timing during a time interval that occurs after the control message is received and in accordance with a rule to align the reception timing of the first UE with a transmission timing of a second UE. The transmission timing of the second UE may be associated with transmission of the CLI reference signals from the second UE. The first UE may perform the CLI measurements using the adjusted reception timing in accordance with the rule. The first UE may transmit a report to the network entity that indicates one or more CLI metrics corresponding to the CLI measurements.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine that an enhanced type-II channel state information (CSI) report configuration, associated with transmitting CSI feedback to a base station, is to be overridden; and transmit, based at least in part on determining that the enhanced type-II CSI report configuration is to be overridden, a CSI report using another CSI report configuration, wherein the CSI report includes the CSI feedback and an indication that the enhanced type-II CSI report configuration has been overridden. Numerous other aspects are provided.
Abstract:
A configuration of cross-carrier channel state information (CSI) reporting is disclosed. A user equipment (UE) may be configured for CSI reporting, which includes multiple trigger states, in which some of these trigger states include at least one carrier indicator identifying at least one component carrier (CC) for CSI measurement. Upon receipt of a downlink control information (DCI) message including identification of one of the trigger states, the UE identifies at least one CSI report configuration which may be identified with an associated CC and identification of at least one CSI resource setting identified with the CC for each of the CSI report configurations. The UE may then perform CSI measurement for the identified CC based on the CSI report configuration and resource setting. The UE may then signal the CSI report, including the CSI measurement, to a serving base station.
Abstract:
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for measuring, filtering, and reporting cross-link interference (CLI) in cases where not all aggressor user equipments (UEs) are transmitting signals that can be measured by a victim UE. A UE may obtain a set of CLI measurements by performing CLI measurements during a set of CLI measurement occasions. The UE may determine a first subset of the set of CLI measurements that satisfy a CLI measurement threshold and a second subset of the set of CLI measurements that do not satisfy the CLI measurement threshold. The UE may apply a filter to the first subset of the set of CLI measurements, and suppress the filter for the second subset of the set of CLI measurements, to obtain a filtered CLI measurement value. The UE may transmit the filtered CLI measurement value to a base station.