Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
A combined scanning and staring (SCARING) focal plane array (FPA) imaging system having a plurality of modes of operation is provided. In one example, the SCARING FPA system includes a photodetector array with a plurality of photodetectors arranged in a plurality of photodetector rows, a readout integrated circuit (ROIC) coupled to the photodetector array, and a processor coupled to the ROIC. The processor coupled to the ROIC is configured to dynamically configure the SCARING FPA between a scanning mode of operation and a staring mode of operation.
Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
According to one aspect, embodiments herein provide a unit cell circuit comprising a photodetector configured to generate a photo-current in response to receiving light, a first integration capacitor configured to accumulate charge corresponding to the photo-current, a second integration capacitor configured to accumulate charge corresponding to the photo-current, a charge diverting switch coupled to the photodetector and configured to selectively couple the first integration capacitor to the second integration capacitor and divert the photo-current to the second integration capacitor in response to a voltage across the first integration capacitor exceeding a threshold level, and read-out circuitry coupled to the first integration capacitor and the charge diverting switch and configured to read-out a first voltage sample from the first integration capacitor corresponding to charge accumulated on the first integration capacitor and to read-out a second voltage sample from the second integration capacitor corresponding to charge accumulated on the second integration capacitor.
Abstract:
A combined scanning and staring (SCARING) focal plane array (FPA) imaging system having a plurality of modes of operation is provided. In one example, the SCARING FPA system includes a photodetector array with a plurality of photodetectors arranged in a plurality of photodetector rows, a readout integrated circuit (ROIC) coupled to the photodetector array, and a processor coupled to the ROIC. The processor coupled to the ROIC is configured to dynamically configure the SCARING FPA between a scanning mode of operation and a staring mode of operation.
Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
A TDI scanner including a dynamically programmable focal plane array including a two-dimensional array of detectors arranged in a plurality of columns and a plurality of rows, the array being divided into a plurality of banks separated from one another by gap regions, each bank including a plurality of sub-banks, and each sub-bank including at least one row of detectors, a ROIC coupled to the focal plane array and configured to combine in a TDI process outputs from detectors in each column of detectors in each sub-bank, and a controller configured to program the focal plane array to selectively and dynamically set characteristics of the focal plane array, the characteristics including a size and a location within the two-dimensional array of each of the plurality of sub-banks and the gap regions, the size corresponding to a number of rows of detectors included in the respective sub-bank or gap region.
Abstract:
According to one aspect, embodiments herein provide a unit cell circuit comprising a photodetector configured to generate a photo-current in response to receiving light, a first integration capacitor configured to accumulate charge corresponding to the photo-current, a second integration capacitor configured to accumulate charge corresponding to the photo-current, a charge diverting switch coupled to the photodetector and configured to selectively couple the first integration capacitor to the second integration capacitor and divert the photo-current to the second integration capacitor in response to a voltage across the first integration capacitor exceeding a threshold level, and read-out circuitry coupled to the first integration capacitor and the charge diverting switch and configured to read-out a first voltage sample from the first integration capacitor corresponding to charge accumulated on the first integration capacitor and to read-out a second voltage sample from the second integration capacitor corresponding to charge accumulated on the second integration capacitor.